当前位置: 首页 > wzjs >正文

怎么提升网站流量关键词优化seo优化

怎么提升网站流量,关键词优化seo优化,wordpress csv导入,公司网站运营注意事项文章目录 前言0、数据集准备1、数据集2、dataset3、model4、训练模型 前言 在pytorch中模型训练一般分为以下几个步骤: 0、数据集准备 1、数据集读取(dataset模块) 2、数据集转换为tensor(dataloader模块) 3、定义模型…

文章目录

    • 前言
    • 0、数据集准备
    • 1、数据集
    • 2、dataset
    • 3、model
    • 4、训练模型

前言

在pytorch中模型训练一般分为以下几个步骤:
0、数据集准备
1、数据集读取(dataset模块)
2、数据集转换为tensor(dataloader模块)
3、定义模型model(编写模型代码,主要是前向传播)
4、定义损失函数loss
5、定义优化器optimizer
6、最后一步是模型训练阶段train:这一步会,利用循环把dataset->dataloader->model->loss->optimizer合并起来。
相比于普通的函数神经网络并没有特别神奇的地方,我们不妨训练过程看成普通函数参数求解的过程,也就是最优化求解参数。以Alex模型为例,进行分类训练。

0、数据集准备

分类数据不需要进行标注,只需要给出类别就可以了,对应分割,检测需要借助labelme或者labelimg进行标注。将数据分为训练集,验证集,测试集。训练集用于模型训练,验证集用于训练过程中检验模型训练参数的表现,测试集是模型训练完成之后验证模型的表现。

1、数据集

从这里下载数据集The TU Darmstadt Database (formerly the ETHZ Database)一个三种类型115 motorbikes + 50 x 2 cars + 112 cows = 327张照片,把数据分为训练train和验证集val

在这里插入图片描述

并对train和val文件夹形成对应的标签文件,每一行为照片的名称和对应的类别编号(从0开始):
在这里插入图片描述

2、dataset

现在写一个名为dataset.py文件,写一个VOCDataset的类,来读取训练集和验证集,VOCDataset继承了torch.utils.data.Dataset,并重写父类的两个函数__getitem__:返回每个图像及其对应的标签,def __len__返回数据集的数量:


import torch  
from torch.utils.data import Dataset
from torchvision import datasets, transforms
from PIL import Image
import osclass VOCDataset(Dataset):def __init__(self, img_dir, label_root, transform=None):self.img_root = img_dirself.label_root = label_rootself.transform = transform# 获取所有图像路径self.img_paths= [os.path.join(self.img_root, f) for f in os.listdir(self.img_root) if f.endswith('.png')]# 读取txt中class标签,txt文件每行格式为: img_name class_idself.label_classes = {}with open(label_root, 'r') as f:for line in f:img_name, class_id = line.strip().split()self.label_classes[img_name] = int(class_id)def __len__(self):return len(self.img_paths)def __getitem__(self, idx):img_path = self.img_paths[idx]img = Image.open(img_path).convert('RGB')# 获取对应的标签img_name = os.path.basename(img_path)target = self.label_classes.get(img_name, -1)if target == -1:raise ValueError(f"Image {img_name} not found in label file.")if self.transform:img = self.transform(img)else:img = transforms.ToTensor()(img)return img, target

3、model

新建一个model.py的文件,写一个Alex的类(参考动手学深度学习7.1),继承torch.nn.Module,重写forword函数:

from torch import nn
from torchvision import modelsclass AlexNet(nn.Module):def __init__(self,num_class=3):super(AlexNet, self).__init__()self.conv2d1=nn.Conv2d(in_channels=3,out_channels=96,kernel_size=11,stride=4,padding=1)self.pool1=nn.MaxPool2d(kernel_size=3,stride=2,padding=0)self.conv2d2=nn.Conv2d(in_channels=96,out_channels=256,kernel_size=5,stride=1,padding=2)self.pool2=nn.MaxPool2d(kernel_size=3,stride=2,padding=0)self.conv2d3=nn.Conv2d(in_channels=256,out_channels=384,kernel_size=3,stride=1,padding=1)self.conv2d4=nn.Conv2d(in_channels=384,out_channels=384,kernel_size=3,stride=1,padding=1)self.conv2d5=nn.Conv2d(in_channels=384,out_channels=256,kernel_size=3,stride=1,padding=1)self.pool3=nn.MaxPool2d(kernel_size=3,stride=2,padding=0)# 全连接层4096self.fc1=nn.Linear(256*5*5,4096)self.fc2=nn.Linear(4096,4096)self.fc3=nn.Linear(4096,num_class)self.sequential = nn.Sequential(self.conv2d1,nn.ReLU(),self.pool1,self.conv2d2,nn.ReLU(),self.pool2,self.conv2d3,nn.ReLU(),self.conv2d4,nn.ReLU(),self.conv2d5,nn.ReLU(),self.pool3,nn.Flatten(),self.fc1,nn.ReLU(),nn.Dropout(0.5),self.fc2,nn.ReLU(),nn.Dropout(0.5),self.fc3)# 初始化权重for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')elif isinstance(m, nn.Linear):nn.init.normal_(m.weight, 0, 0.01)nn.init.constant_(m.bias, 0)def forward(self,x):x = self.sequential(x)return x

4、训练模型

首先定义损失函数和优化器:

  criterion = torch.nn.CrossEntropyLoss()optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-4)

新建一个train.py的文件:

import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from dataset import VOCDataset
from model import AlexNet, ResnetPretrained
from torchvision import models
from torchvision.datasets import CIFAR10
from dataset import VOCDataset
import tensorboarddef train(model, train_dataset, val_dataset, num_epochs=20, batch_size=32, learning_rate=0.001):# 1. 创建数据加载器train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4)# 2. 定义损失函数和优化器criterion = torch.nn.CrossEntropyLoss()optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=1e-4)# optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)# 3. 修正学习率调度器(放在循环外)scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=2)# 4. 训练模型best_acc = 0.0for epoch in range(num_epochs):model.train()running_loss = 0.0total = 0for i, (inputs, labels) in enumerate(train_loader):inputs, labels = inputs.cuda(), labels.cuda()optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item() * inputs.size(0)total += inputs.size(0)if i % 100 == 0:avg_loss = running_loss / totalprint(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {avg_loss:.4f}')# 每个epoch结束后验证model.eval()correct = 0total_val = 0val_loss = 0.0with torch.no_grad():for inputs, labels in val_loader:inputs, labels = inputs.cuda(), labels.cuda()outputs = model(inputs)loss = criterion(outputs, labels)_, predicted = torch.max(outputs.data, 1)total_val += labels.size(0)correct += (predicted == labels).sum().item()val_loss += loss.item() * inputs.size(0)epoch_acc = 100 * correct / total_valavg_val_loss = val_loss / total_valprint(f'Epoch {epoch+1}/{num_epochs} | 'f'Train Loss: {running_loss/total:.4f} | 'f'Val Loss: {avg_val_loss:.4f} | 'f'Val Acc: {epoch_acc:.2f}%')# 更新学习率(基于验证集准确率)#scheduler.step(epoch_acc)# 保存最佳模型if epoch_acc > best_acc:best_acc = epoch_acctorch.save(model.state_dict(), 'best_alexnet_cifar10.pth')print(f'Best Validation Accuracy: {best_acc:.2f}%')if __name__ == "__main__":# 1. 定义数据集路径train_img_dir = r'F:\dataset\tud\TUDarmstadt\PNGImages\train'val_img_dir = r'F:\dataset\tud\TUDarmstadt\PNGImages\val'train_label_file = r'F:\dataset\tud\TUDarmstadt\PNGImages/train_set.txt'val_label_file = r'F:\dataset\tud\TUDarmstadt\PNGImages/val_set.txt'# 2. 创建数据集实例# 增强数据增强transform_train = transforms.Compose([transforms.Resize((256, 256)),  # 先放大transforms.RandomCrop(224),  # 随机裁剪transforms.RandomHorizontalFlip(),transforms.RandomRotation(15),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])# 验证集不需要数据增强,但需要同样的预处理transform_val = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])# 创建训练和验证数据集train_dataset = VOCDataset(train_img_dir, train_label_file, transform=transform_train)val_dataset = VOCDataset(val_img_dir, val_label_file, transform=transform_val)print(f'Train dataset size: {len(train_dataset)}')print(f'Validation dataset size: {len(val_dataset)}')# 2. 下载并利用CIFAR-10数据集进行分类# # # 定义数据增强和预处理# transform_train = transforms.Compose([#     transforms.Resize((224, 224)),#     transforms.RandomHorizontalFlip(),#     transforms.RandomCrop(224, padding=4),#     transforms.ToTensor(),#     transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], #                          std=[0.2470, 0.2435, 0.2616])# ])# transform_val = transforms.Compose([#     transforms.Resize((224, 224)),#     transforms.ToTensor(),#     transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], #                          std=[0.2470, 0.2435, 0.2616])# ])# # 下载CIFAR-10训练集和验证集# train_dataset = CIFAR10(root='data', train=True, download=True, transform=transform_train)# val_dataset = CIFAR10(root='data', train=False, download=True, transform=transform_val)# print(f'Train dataset size: {len(train_dataset)}')# print(f'Validation dataset size: {len(val_dataset)}')# 3. 创建模型实例model = AlexNet(num_class=10)  # CIFAR-10有10个类别  # 检查是否有可用的GPUdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")model.to(device)  # 将模型移动到GPU或CPU# 打印模型结构#print(model)# 4. 开始训练train(model, train_dataset, val_dataset, num_epochs=20, batch_size=32, learning_rate=0.001)print('Finished Training')# 5. 保存模型torch.save(model.state_dict(), 'output/alexnet.pth')print('Model saved as alexnet.pth')

运行main函数就可以进行训练了,后面会讲一些如何改进这个模型和一些训练技巧。

参考:
1
2
3

http://www.dtcms.com/wzjs/196176.html

相关文章:

  • 1号网站建设太原搜索排名提升
  • 网站制作 网站台州百度推广优化
  • 谁帮58同城做的网站吗手机黄页怎么找
  • 登陆工伤保险网站 提示未授权 怎么做免费域名申请网站
  • 简单网一键优化
  • diango是做网站的后端吗营销策略怎么写模板
  • 青岛网站专业制作今日资讯最新消息
  • 如何做微信小程序?百度首页排名优化平台
  • 山西网络科技有限公司网站优化检测工具
  • 加强人社网站建设一站式营销推广
  • 营销型网站有意义吗搜索引擎优化结果
  • wp网站怎么用插件做html网页百度推广账户优化方案
  • 做时时彩网站费用网站怎么被百度收录
  • 项目计划书范文免费aso优化师主要是干嘛的
  • 高效网站建设与维护岗位职责国内重大新闻十条
  • 中文网址的作用智能网站排名优化
  • 做电商网站费用产品互联网营销推广
  • 建设一个视频网站需要什么时候开始如何免费做网站推广的
  • 天津网站建设教程电商运营公司排名
  • 芜湖手机网站制作新泰网站seo
  • 厦门做网站多少钱网络推广渠道排名
  • 石材网站建设独立站seo推广
  • 30天网站建设 视频教程百度智能建站系统
  • 微信公众号推广运营广州网站seo公司
  • 阿克苏网站建设咨询国外推广网站
  • 济宁高端网站建设百度推广效果
  • 做网站广告公司联系方式百度小说免费阅读
  • 网站上传wordpress百度官网首页入口
  • 做企业网站代码那种好免费手机网站自助建站
  • 公司网站建设价格表免费网站安全软件大全