当前位置: 首页 > wzjs >正文

wordpress伪静态不跳转404湖北seo公司

wordpress伪静态不跳转404,湖北seo公司,山东济南疫情最新消息,免费app制作平台有哪些前言 在此之前,我已经详细介绍了RNN和LSTM,RNN虽然在处理序列数据中发挥了重要的作用,但它在实际使用中存在长期依赖问题,处理不了长序列,因为RNN对信息的保存只依赖一个隐藏状态,当序列过长,隐…

前言

在此之前,我已经详细介绍了RNN和LSTM,RNN虽然在处理序列数据中发挥了重要的作用,但它在实际使用中存在长期依赖问题,处理不了长序列,因为RNN对信息的保存只依赖一个隐藏状态,当序列过长,隐藏转态保存的东西过多时,它对于前面的信息的抽取就会变得困难。为了解决这个问题,LSTM被提出,它通过设计复杂的门控机制以及记忆单元,实现了对信息重要性的提取:因为在现实中,对于一个序列来说,并不是序列中所有的信息都是同等重要的,这就意味着模型可以只记住相关的观测信息即可,但LSTM因为过多的门控机制与记忆单元,导致参数过多,训练速度慢。而GRU则是对LSTM的进一步优化,它的结构简单,训练更高效,并且性能同样出色


一、GRU诞生背景:RNN与LSTM的局限性

1. RNN的问题

RNN 依赖于隐藏单元循环结构来记忆序列信息,但在面对较长序列时会遇到:

  • 梯度消失/爆炸问题
  • 长期依赖问题
  • 训练效率低下

2. LSTM的改进

LSTM 通过设计输入门、遗忘门、输出门,以及单独的记忆单元,有效控制信息流,解决了上述问题。但 LSTM 的结构较为复杂,参数量大,训练慢。

二、GRU:结构更简单性能同样优秀的门控循环单元

GRU在2014年被提出来,其思想来源于LSTM的设计,但是对LSTM的进一步简化:

  • 没有单独的记忆单元,只有一个隐藏转态
  • 将LSTM的输入门和忘记门合并为一个更新门
  • 另有一个重置门控制新信息与历史信息的融合程度

其具体结构如下:

如图可以看出,GRU由重置门、更新门、隐藏状态组成,对于每个时间步,GRU都会进行以下操作:

1. 重置门

重置门(R_t)的作用是:决定遗忘多少过去的信息

R_t=\sigma(X_t @ W_{xr} + H_{t-1} @ W_{hr} + b_r)

2. 更新门

更新门(Z_t)的作用是:决定保留多少过去的信息

Z_t=\sigma(X @ W_{xz} + H @ W_{hz} + b_z)

3. 候选隐藏转态

候选隐藏转态(\tilde {H})能控制对前面信息的遗忘程度,因为 R_t 经过 Sigmoid 后的值在 [0,1] 之间,当 R_t 趋近于 0 时,则表示要遗忘之前的信息,趋近于 1 时,要记住前面的信息

\tilde{H}=tanh(X_t@ W_{xh} + (R_t * H_{t-1}) @ W_{hh} + b_h)

4. 真正的隐藏转态

当 Z_t 为 1 时,忽略当前的候选隐藏转态,直接用前面的隐藏转态 H_{t-1} 作为当前的隐藏转态,当 Z_t 为 0 时,GRU就相当于退化成RNN了。

H_t=Z_t*H_{t-1}+(1-Z_t)*\tilde {H}


三、GRU与RNN/LSTM的比较

特性RNNLSTMGRU
是否解决长期依赖
参数量较少
门控机制输入、输出、遗忘重置、更新
记忆单元无(仅隐藏转态)
训练速度快、但性能差
表现一般类似甚至优于LSTM

GRU相比LSTM来说,结构简洁,参数少,训练更快,在多数任务上性能媲美甚至优于LSTM。更少的参数对过拟合更友好。但由于简化了部分结构,缺少了记忆单元的独立控制,无法像LSTM一样分开控制信息流


 四、手写GRU

通过上面的介绍,我们现在已经知道了GRU的实现原理,现在,我们试着手写一个GRU核心层:

首先,与RNN、LSTM一样,我们先初始化所需要的参数:

import torch
import torch.nn as nn
import torch.nn.functional as Fdef params(input_size, output_size, hidden_size):W_xz, W_hz, b_z = torch.randn(input_size, hidden_size) * 0.1, torch.randn(hidden_size, hidden_size) * 0.1, torch.zeros(hidden_size)W_xr, W_hr, b_r = torch.randn(input_size, hidden_size) * 0.1, torch.randn(hidden_size, hidden_size) * 0.1, torch.zeros(hidden_size)W_xh, W_hh, b_h = torch.randn(input_size, hidden_size) * 0.1, torch.randn(hidden_size, hidden_size) * 0.1, torch.zeros(hidden_size)W_hq = torch.randn(hidden_size, output_size) * 0.1b_q = torch.zeros(output_size)params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]for param in params:param.requires_grad = Truereturn params

然后,定义初始隐藏转态: 

import torchdef init_state(batch_size, hidden_size):return (torch.zeros((batch_size, hidden_size)), )

最后,是GRU的核心操作:

import torch
import torch.nn as nn
def gru(X, state, params):[W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q] = params(H, C) = stateoutputs = []for x in X:Z = torch.sigmoid(torch.mm(x, W_xz) + torch.mm(H, W_hz) + b_z)R = torch.sigmoid(torch.mm(x, W_xr) + torch.mm(H, W_hr) + b_r)H_tilde = torch.tanh(torch.mm(x, W_xh) + torch.mm((R * H), W_hh) + b_h)H = Z * H + (1 - Z) * H_tildeY = torch.mm(H, W_hq) + b_qoutputs.append(Y)return torch.cat(outputs, dim=1), (H,)

四、使用Pytroch实现简单的LSTM

在Pytroch中,已经内置了gru函数,我们只需要调用就可以实现上述操作:

import torch
import torch.nn as nnclass mygru(nn.Module):def __init__(self, input_size, hidden_size, output_size, num_layers=1):super(mygru, self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layersself.gru = nn.GRU(input_size, hidden_size, num_layers=num_layers, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x, h0):out, hn = self.gru(x, h0)out = self.fc(out)return out, hn# 示例
# 参数定义
input_size = 10
hidden_size = 20
output_size = 10
seq_len = 5
batch_size = 1
num_layers = 1model = mygru(input_size, hidden_size, output_size, num_layers)
inputs = torch.randn(batch_size, seq_len, input_size)
h0 = torch.zeros(num_layers, batch_size, hidden_size)output, hn = model(inputs, h0)
print(output.shape)

总结

以上就是本文的全部内容,算上本篇,我们已经系统性的讲述了RNN、RNN的进化版 LSTM、LSTM的优化版 GRU,相信小伙伴们已经对序列模型有了相当深刻的认识。GRU是一种比LSTM更轻量的门控循环单元,保留了长距离依赖建模能力,同时减少了参数量和计算复杂度。对于大多数NLP和时间序列任务来说,GRU提供了一个在性能与效率之间平衡良好的选择。


如果小伙伴们觉得本文对各位有帮助,欢迎:👍点赞 | ⭐ 收藏 |  🔔 关注。我将持续在专栏《人工智能》中更新人工智能知识,帮助各位小伙伴们打好扎实的理论与操作基础,欢迎🔔订阅本专栏,向AI工程师进阶!

http://www.dtcms.com/wzjs/194015.html

相关文章:

  • 番禺外贸型网站建设竞价推广是什么工作
  • 软件接单安卓优化大师旧版本
  • 网站系统开发怎么做哪些平台可以发布推广信息
  • 网站建设开发方式南京seo排名
  • 河南省能源规划建设局网站电商运营推广的方式和渠道有哪些
  • 建设厅网站举报搜狐视频
  • 校园网站制作seo关键词选择及优化
  • 异地备案 网站在线搜索资源
  • 网站设计标准泰安网站制作推广
  • 网站首页图片素材长图厦门网络推广
  • o2o网站系统竞猜世界杯
  • 龙华做网站哪家便宜推广引流app
  • 建设银行校园招聘网站汕头seo外包机构
  • 香港网站维护公司关键词可以分为哪三类
  • 做淘宝优惠网站社群营销案例
  • 企业网站排名优化价格学习软件
  • 天津专业做网站网络营销方式哪些
  • 保定建站模板宁波网站建设优化企业
  • 购物网站创业时是如何做宣传的nba最新交易新闻
  • 网站模板开发平台怎么做开发网站多少钱
  • 做外贸相关的网站网站快速优化排名
  • dw网页制作超链接性价比高seo排名优化的
  • 不会写程序如何建网站百度快照怎么看
  • 着力优化政府门户网站建设中山百度推广公司
  • 浙江设计公司网站整站优化
  • 网站建费用成品视频直播软件推荐哪个好一点
  • 中小企业建网站注意百度下载安装2022最新版
  • 如何设置多个首页wordpress宁波网站seo哪家好
  • 徐州建站方案网络整合营销是什么意思
  • 网站建设一般怎么付款站长统计性宝app