当前位置: 首页 > wzjs >正文

计算机网络设计seo如何挖掘关键词

计算机网络设计,seo如何挖掘关键词,黄页推广有限公司,wordpress 安装地址cheer 向……欢呼,使高兴,欢呼,欢呼,愉快 前言区间平均值费马引理罗尔三步万能构造原函数的方法什么时候用罗尔定理计划拉格朗日需要记忆的不等式柯西中值定理泰勒高阶导数判断极值最后 前言 继续学习。今天争取把讲义和作业题都…

在这里插入图片描述

cheer 向……欢呼,使高兴,欢呼,欢呼,愉快

  • 前言
  • 区间平均值
  • 费马引理
  • 罗尔
  • 三步万能构造原函数的方法
  • 什么时候用罗尔定理
  • 计划
  • 拉格朗日
  • 需要记忆的不等式
  • 柯西中值定理
  • 泰勒
  • 高阶导数判断极值
  • 最后

前言

继续学习。今天争取把讲义和作业题都写完。另外考研政治笔记审核通不过,还是多写一点英语,数学,专业课笔记,有一些内容可以记录到语雀上面,唯一的坏处就是写在语雀上面和写日记一样,给不了我正反馈。。

区间平均值

就是由积分中值定理推导出来的,之前写题碰到过,但是当时不知道这个东西。

费马引理

费马,罗尔,拉格朗日,柯西,泰勒。

极值点,并且可导,那么该点处导数为零。微分中值定理实际上非常重要。

罗尔

闭区间连续,开区间可导,端点相等,存在一点的导数为零。算了,先去吃饭。

三步万能构造原函数的方法

目标高远。志存高远。

这个部分的内容非常重要。首先把微分方程列出来,然后解微分方程,把 C 放在方程的一边,另一边就是我们需要构造的函数。举个例子

f ( ξ ) + ξ f ( ξ ) = 0 f ( x ) + x ⋅ f ′ ( x ) = 0 f ′ ( x ) = − f ( x ) x 令  f ( x ) x = u d f ( x ) d x = d u d x + u = − u d u d x = − 2 u x f ( x ) = C F ( x ) = x f ( x ) f(\xi)+\xi f(\xi)=0\\[1cm] f(x)+x \cdot f'(x)=0\\[0.5cm] f'(x)=-\frac{f(x)}{x}\\[0.5cm] \text{令 }\frac{f(x)}{x}=u\\[0.5cm] \frac{df(x)}{dx}=\frac{du}{dx}+u=-u\\[0.5cm] \frac{du}{dx}=-2u\\[0.5cm] xf(x)=C\\[0.5cm] F(x)=xf(x) f(ξ)+ξf(ξ)=0f(x)+xf(x)=0f(x)=xf(x) xf(x)=udxdf(x)=dxdu+u=udxdu=2uxf(x)=CF(x)=xf(x)
意思大概就是这样,实际上就是解微分方程,这就是为什么要先学微分方程,再学中值定理的原因。

什么时候用罗尔定理

证明至少存在一个中值点, ξ \xi ξ,使得等式成立。

  • F ( ξ ) = 0 F(\xi)=0 F(ξ)=0 零点定理
  • F ′ ( ξ ) = 0 F'(\xi)=0 F(ξ)=0 罗尔定理

坦率地讲,感觉好简单,感觉考研数学稳了。哈哈哈爽。

积分中值定理的结论是闭区间,因为积分和单个点无关,所以可以推广到开区间。实际上,严格闭区间的只有介值定理。因为假设,极值点取在端点的时候,一定要取闭区间。

中值定理
积分中值定理
微分中值定理
罗尔定理
费马引理
拉格朗日
泰勒
柯西
闭区间
最值定理
有界定理
介值定理
零点定理

计划

学完讲义和作业题,然后把 660 和 1000 上面的题全部写完,然后再多练习一些题。

拉格朗日

我现在意识到,很多东西我们都会忘记,把一些重要的东西记住就好了。没必要对单次努力抱多大的期望,放轻松一些是一个比较正确的选择。

需要记忆的不等式

x > 0 , 1 1 + x < l n ( 1 + 1 x ) < 1 x x > 0 , x x + 1 < l n ( 1 + x ) < x x>0,\frac{1}{1+x}<ln(1+\frac{1}{x})<\frac{1}{x}\\[0.5cm] x>0,\frac{x}{x+1}<ln(1+x)<x x>0,1+x1<ln(1+x1)<x1x>0,x+1x<ln(1+x)<x

柯西中值定理

不放过任何知识点,因为我们的目标是星辰大海。稍微有点难是不能放弃的,当然很难也不能放弃。除非死去,永不放弃。想起来大一的高数老师喜欢用英文来写这种定理,什么 roll 定理,给当时本来就不是很懂的我们额外上了一些难度。

证明柯西中值定理,用罗尔定理来证明,用罗尔定理之前要构造一个原函数。构造原函数就是三步走。非常简单。数学真的想考满分啊。

泰勒

在这里插入图片描述
突然意识到,控制是一件非常重要的事情。把控制做好之后,我们很多问题才能很好地解决。

高阶导数判断极值

假设一个函数在某点处可以 n 阶求导,那么,假设前面 n - 1 阶导数都是零,n 阶导数是偶数,这个导数是正数,该点处是极小值,这个导数是负数,该点处是极大值。假设是奇数,这个点不是极值。

最后

我没太理解为什么泰勒公式要放到中值定理这块。。。之后准备把讲义和练习题看一下,然后开始复习多元微分。还是得多努力学习。

http://www.dtcms.com/wzjs/193741.html

相关文章:

  • 做网站平台赚钱吗搜索量查询
  • 哪个网站做团购要求低点网站seo运营
  • 桂林网站制作公司企业网站注册域名的步骤
  • 个人网站做导航网站it教育培训机构排名
  • 云南网站开发培训机构排行seo专业培训技术
  • 网站自动秒收录工具网络营销专业是做什么的
  • 网上做ps赚钱的网站口碑营销的案例及分析
  • 重庆新闻联播回看太原关键词优化公司
  • 课程网站建设简介百度关键词搜索热度
  • 线上广告推广无锡seo公司找哪家好
  • 为企业进行网站建设方案精准客户运营推广
  • 手机网站判断代码汕头疫情最新消息
  • api软件太原seo外包服务
  • 内蒙古微网站建设短链接
  • 网站开发广告宣传语怎么才能在百度上打广告
  • 免费pc 微网站模板网店运营公司
  • 域名注册之后怎么进行网站建设seo是什么技术
  • 做cpa广告网站教程想要推广网页
  • 淘客网站如果做优化福州百度推广排名优化
  • 上海公安门户网站全网seo是什么意思
  • 在设计赚钱的网站有哪些黑科技引流推广神器
  • c 微网站开发百度咨询
  • 大庆网站建设公司ciliba磁力搜索引擎
  • 专业网站建设费用怎么算百度大搜
  • 网站建设咨询哪家性价比高sem推广竞价
  • 广州3d网站开发杭州seo公司服务
  • 做微信头图的网站太原网站制作优化seo
  • 汉阳区建设局网站深圳seo网站优化公司
  • 网站做中英文英文太长怎么办如何做宣传推广营销
  • 芜湖企业做网站网站优化推广价格