当前位置: 首页 > wzjs >正文

手机网站建设 cms站长工具网站测速

手机网站建设 cms,站长工具网站测速,网站管理员权限设置权限设置,div+css网站后台模板一、说明 欢迎来到拉普拉斯和高斯滤波器的拉普拉斯的故事。LoG是先进行高斯处理,继而进行拉普拉斯算子的图像处理算法。用拉普拉斯具有过零功能,实现边缘岭脊提取。 二、LoG算法简述 在这篇博客中,让我们看看拉普拉斯滤波器和高斯滤波器的拉普…

一、说明

        欢迎来到拉普拉斯和高斯滤波器的拉普拉斯的故事。LoG是先进行高斯处理,继而进行拉普拉斯算子的图像处理算法。用拉普拉斯具有过零功能,实现边缘岭脊提取。

二、LoG算法简述

        在这篇博客中,让我们看看拉普拉斯滤波器和高斯滤波器的拉普拉斯滤波器以及 Python 中的实现。拉普拉斯滤波器的故事始于图论中的拉普拉斯矩阵,这是在矩阵中表示图的最简单方法。图像的拉普拉斯高亮了强度快速变化的区域。任何具有明显不连续性的特征都将由拉普拉斯算子增强。拉普拉斯滤波器属于导数滤波器类别。它是一种二阶滤波器,用于图像处理,用于边缘检测和特征提取。当我们使用一阶导数滤波器时,我们必须应用单独的滤波器来检测垂直和水平边缘,然后将两者结合起来。但是拉普拉斯滤波器可以检测所有边缘,而不管方向如何。

        在数学上,拉普拉斯滤波器定义为:

        拉普拉斯滤波器函数

        存在 2 种类型的拉普拉斯滤波器。

  1. 拉普拉斯阳性
  2. 负拉普拉斯

        正拉普拉斯算子使用掩码,中心元素为负值,角元素为 0。此滤镜可识别图像的外边缘。下面给出了一个过滤器掩码示例。

阳性拉普拉斯掩模

        负拉普拉斯算子用于查找图像的内边缘。它使用标准蒙版,中心元素为正元素,角元素为 0,所有其他元素为 -1。下面给出一个示例。

负拉普拉斯掩码

        在这两种情况下,筛选器中的值总和应为 0。标准面罩有不同的变体可供选择。你可以试穿它。

三、过零功能

        过零点是数学函数的符号在函数图中发生变化的点。在图像处理中,使用拉普拉斯滤波器的边缘检测是通过将图中导致零的点标记为潜在的边缘点来进行的。此方法适用于在两个方向上查找边缘的图像,但当在图像中发现噪点时效果不佳。因此,我们通常在拉普拉斯滤波器之前应用 Guassian 滤波器对图像进行平滑处理。它通常被称为瓜西拉普拉斯 (LoG) 滤波器。我们可以将 Guassian 和 Laplacian 运算组合在一起,组合滤波器的数学表示如下:

LoG滤波器功能

四、代码块

        方法 1

        下面提到了实现 LoG 过滤器的 OpenCV 内置函数方法。

#OPENCV implementationimport cv2
import matplotlib.pyplot as plt
image = cv2.imread(r"E:\eye.png", cv2.IMREAD_COLOR)
image = cv2.GaussianBlur(image, (3, 3), 0)
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
filtered_image = cv2.Laplacian(image_gray, cv2.CV_16S, ksize=3)
# Plot the original and filtered images
plt.figure(figsize=(10, 5))
plt.subplot(121)
plt.imshow(image, cmap='gray')
plt.title('Original Image')plt.subplot(122)
plt.imshow(filtered_image, cmap='gray')
plt.title('LoG Filtered Image')plt.show()

        程序输出:

        方法 2

        在 openCV 中实现 LoG 过滤器的 Python 函数如下所示。

import cv2
import matplotlib.pyplot as plt
import numpy as np
def LoG_filter_opencv(image, sigma, size=None):# Generate LoG kernelif size is None:size = int(6 * sigma + 1) if sigma >= 1 else 7if size % 2 == 0:size += 1x, y = np.meshgrid(np.arange(-size//2+1, size//2+1), np.arange(-size//2+1, size//2+1))kernel = -(1/(np.pi * sigma**4)) * (1 - ((x**2 + y**2) / (2 * sigma**2))) * np.exp(-(x**2 + y**2) / (2 * sigma**2))kernel = kernel / np.sum(np.abs(kernel))# Perform convolution using OpenCV filter2Dresult = cv2.filter2D(image, -1, kernel)return result# Example usage:
image = cv2.imread(r"E:\eye.png", cv2.IMREAD_GRAYSCALE)  # Replace 'path_to_your_image.png' with your image path
sigma = 2.0
filtered_image = LoG_filter_opencv(image, sigma)
filtered_image = cv2.convertScaleAbs(filtered_image)
plt.imshow(filtered_image, cmap="gray")

        程序的输出:

        方法 3

        下面给出了使用 scipy 包的 LoG 过滤器的 Python 函数实现。

import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage import convolve
from scipy import miscdef LoG_filter(image, sigma, size=None):# Generate LoG kernelif size is None:size = int(6 * sigma + 1) if sigma >= 1 else 7if size % 2 == 0:size += 1x, y = np.meshgrid(np.arange(-size//2+1, size//2+1), np.arange(-size//2+1, size//2+1))kernel = -(1/(np.pi * sigma**4)) * (1 - ((x**2 + y**2) / (2 * sigma**2))) * np.exp(-(x**2 + y**2) / (2 * sigma**2))kernel = kernel / np.sum(np.abs(kernel))# Perform convolutionresult = convolve(image, kernel)return result# Example usage:
image = cv2.imread(r"E:\eye.png", cv2.IMREAD_GRAYSCALE)  # Replace 'path_to_your_image.png' with your image path
sigma = 2.0
filtered_image = LoG_filter(image, sigma)# Plot the original and filtered images
plt.figure(figsize=(10, 5))
plt.subplot(121)
plt.imshow(image, cmap='gray')
plt.title('Original Image')plt.subplot(122)
plt.imshow(filtered_image, cmap='gray')
plt.title('LoG Filtered Image')plt.show()

        程序输出:

        希望您喜欢阅读。这是关于图像处理中常用过滤器的另一篇文章的链接 用于图像处理的不同过滤器 | by 拉吉·利尼 |中。

http://www.dtcms.com/wzjs/185145.html

相关文章:

  • 做外贸重新设计网站科学新概念外链平台
  • 网站建设合同英文版自媒体135网站免费下载安装
  • 网站空间ftp申请域名的方法和流程
  • 政务网站建设要求app开发公司排行榜
  • 网站建设项目简介seo教程有什么
  • 温州网站建设哪家公司好网页优化包括什么
  • 织梦响应式网站模板seo企业推广案例
  • 做企业网站的前景免费的黄冈网站代码
  • 繁体中文网站 怎么做推广普通话宣传周
  • 那个网站做任务赚钱成都网络推广公司
  • 百度街景地图网页版大连百度关键词优化
  • 南昌做网站优化哪家好2345网址导航浏览器下载
  • 微网站开发平台案例百度网站的域名地址
  • 网站建设与设计 毕业设计百度上做推广怎么做
  • 商业网站运营成本专业竞价托管哪家好
  • 怀仁有做网站的公司吗深圳高端seo外包公司
  • 专门做招商的网站是什么情况关键词优化系统
  • 网站开发w亿玛酷1专注免费网站建设制作
  • 做装饰公司网站桔子seo工具
  • 申请注册邮箱163免费注册百度seo排名360
  • 做网站 融资深圳seo优化排名优化
  • wordpress 微信 商城模板宁波百度推广优化
  • 网站制作公司重庆爱站网长尾关键词
  • wordpress 检测redis汕头seo推广外包
  • 怎么做网站给国外看见职业培训机构排名前十
  • b2b网站平台免费有哪些百度推广竞价开户
  • 潍坊网站建设 潍坊做网站网页优化seo广州
  • 唐山市住房城乡建设局网站推广产品
  • 柬埔寨做网站赌博在那边违反吗手机网站模板免费下载
  • 自己电脑怎么做网站服务器百度怎么优化排名