当前位置: 首页 > wzjs >正文

做网站要下载的软件营销策划书范文1000字

做网站要下载的软件,营销策划书范文1000字,搭建网页整体框架技术,如何找百度做网站PyTorch的所有模型(nn.Module)都只接受Tensor格式的输入,所以我们在使用图像数据集时,必须将图像转换为Tensor格式。PyTorch提供了torchvision.transforms模块来处理图像数据集。torchvision.transforms模块提供了一些常用的图像预…

PyTorch的所有模型(nn.Module)都只接受Tensor格式的输入,所以我们在使用图像数据集时,必须将图像转换为Tensor格式。PyTorch提供了torchvision.transforms模块来处理图像数据集。torchvision.transforms模块提供了一些常用的图像预处理方法,如Resize、CenterCrop、RandomCrop、RandomHorizontalFlip等。
torchvision.transforms模块还提供了ToTensor()方法,可以将PIL格式的图像转换为Tensor格式。ToTensor()方法会将图像的像素值从[0, 255]范围缩放到[0, 1]范围,并将图像的通道顺序从(H, W, C)转换为(C, H, W)。
本文以Pytorch中TorchVision的FashionMNIST数据集为例,展示如何将图像数据转换为Tensor格式。

import torch
from torchvision.datasets import FashionMNIST
from torchvision.transforms import ToTensor #将图像数据转换为张量 #加载数据集
train_data = FashionMNIST(root='./fashion_data', train=True, download=True) 
test_data = FashionMNIST(root='./fashion_data', train=False, download=True)

未转换为Tensor格式的FashionMNIST数据集

train_data  #Dataset对象(输入数据的集合) 60000个样本
Dataset FashionMNISTNumber of datapoints: 60000Root location: ./fashion_dataSplit: Train
import matplotlib.pyplot as plt train_data = FashionMNIST(root='./fashion_data', train=True, download=True) img,clzz = train_data[5]  #返回一个元组,第一个元素是图片,第二个元素是标签
plt.imshow(img, cmap='gray') #显示图片,cmap='gray'表示以灰度图显示;img是一个tensor,是一个PIL.Image对象(python原始数据类型)
plt.title(clzz)
plt.show()

在这里插入图片描述

train_data[1]  #返回的是一个元组,第一个元素是图片,第二个元素是标签
#train_data[1][0].shape  #图像数据(一个颜色通道:28*28,图像高度,图像宽度)
#train_data[1][0].reshape(-1).shape  #将图像数据展平为一维张量
(<PIL.Image.Image image mode=L size=28x28>, 0)

转换为Tensor格式的FashionMNIST数据集

#加载数据集
train_data = FashionMNIST(root='./fashion_data', train=True, download=True, transform=ToTensor()) 
test_data = FashionMNIST(root='./fashion_data', train=False, download=True, transform=ToTensor())
train_data  #Dataset对象(输入数据的集合) 60000个样本
Dataset FashionMNISTNumber of datapoints: 60000Root location: ./fashion_dataSplit: TrainStandardTransform
Transform: ToTensor()

可以对比下图像数据集转换前后的效果,未转换为Tensor格式的FashionMNIST数据集是PIL格式的图像,而转换为Tensor格式的FashionMNIST数据集是Tensor格式的图像。

train_data[1]  #输出的是一个元组,第一个元素是图片,第二个元素是标签
(tensor([[[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000,0.0000, 0.0000, 0.1608, 0.7373, 0.4039, 0.2118, 0.1882, 0.1686,0.3412, 0.6588, 0.5216, 0.0627, 0.0000, 0.0000, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000, 0.0000, 0.1922,0.5333, 0.8588, 0.8471, 0.8941, 0.9255, 1.0000, 1.0000, 1.0000,1.0000, 0.8510, 0.8431, 0.9961, 0.9059, 0.6275, 0.1765, 0.0000,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0549, 0.6902, 0.8706,0.8784, 0.8314, 0.7961, 0.7765, 0.7686, 0.7843, 0.8431, 0.8000,0.7922, 0.7882, 0.7882, 0.7882, 0.8196, 0.8549, 0.8784, 0.6431,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.7373, 0.8588, 0.7843,0.7765, 0.7922, 0.7765, 0.7804, 0.7804, 0.7882, 0.7686, 0.7765,0.7765, 0.7843, 0.7843, 0.7843, 0.7843, 0.7882, 0.7843, 0.8824,0.1608, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.2000, 0.8588, 0.7804, 0.7961,0.7961, 0.8314, 0.9333, 0.9725, 0.9804, 0.9608, 0.9765, 0.9647,0.9686, 0.9882, 0.9725, 0.9216, 0.8118, 0.7961, 0.7961, 0.8706,0.5490, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.4549, 0.8863, 0.8078, 0.8000,0.8118, 0.8000, 0.3961, 0.2941, 0.1843, 0.2863, 0.1882, 0.1961,0.1765, 0.2000, 0.2471, 0.4431, 0.8706, 0.7922, 0.8078, 0.8627,0.8784, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.7843, 0.8706, 0.8196, 0.7961,0.8431, 0.7843, 0.0000, 0.2745, 0.3843, 0.0000, 0.4039, 0.2314,0.2667, 0.2784, 0.1922, 0.0000, 0.8588, 0.8078, 0.8392, 0.8235,0.9804, 0.1490, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.9686, 0.8549, 0.8314, 0.8235,0.8431, 0.8392, 0.0000, 0.9961, 0.9529, 0.5451, 1.0000, 0.6824,0.9843, 1.0000, 0.8039, 0.0000, 0.8431, 0.8510, 0.8392, 0.8157,0.8627, 0.3725, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.1765, 0.8863, 0.8392, 0.8392, 0.8431,0.8784, 0.8039, 0.0000, 0.1647, 0.1373, 0.2353, 0.0627, 0.0667,0.0471, 0.0510, 0.2745, 0.0000, 0.7412, 0.8471, 0.8314, 0.8078,0.8314, 0.6118, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.6431, 0.9216, 0.8392, 0.8275, 0.8627,0.8471, 0.7882, 0.2039, 0.2784, 0.3490, 0.3686, 0.3255, 0.3059,0.2745, 0.2980, 0.3608, 0.3412, 0.8078, 0.8118, 0.8706, 0.8353,0.8588, 0.8157, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.4157, 0.7333, 0.8745, 0.9294, 0.9725,0.8275, 0.7765, 0.9882, 0.9804, 0.9725, 0.9608, 0.9725, 0.9882,0.9922, 0.9804, 0.9882, 0.9373, 0.7882, 0.8314, 0.8824, 0.8431,0.7569, 0.4431, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0667, 0.2118, 0.6235,0.8706, 0.7569, 0.8157, 0.7529, 0.7725, 0.7843, 0.7843, 0.7843,0.7843, 0.7882, 0.7961, 0.7647, 0.8235, 0.6471, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.1843,0.8824, 0.7529, 0.8392, 0.7961, 0.8078, 0.8000, 0.8000, 0.8039,0.8078, 0.8000, 0.8314, 0.7725, 0.8549, 0.4196, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0039, 0.0235, 0.0000, 0.1804,0.8314, 0.7647, 0.8314, 0.7922, 0.8078, 0.8039, 0.8000, 0.8039,0.8078, 0.8000, 0.8314, 0.7843, 0.8549, 0.3569, 0.0000, 0.0118,0.0039, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0039, 0.0000, 0.0431,0.7725, 0.7804, 0.8039, 0.7922, 0.8039, 0.8078, 0.8000, 0.8039,0.8118, 0.8000, 0.8039, 0.8039, 0.8549, 0.3020, 0.0000, 0.0196,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0118, 0.0000, 0.0078,0.7490, 0.7765, 0.7882, 0.8039, 0.8078, 0.8039, 0.8039, 0.8078,0.8196, 0.8078, 0.7804, 0.8196, 0.8588, 0.2902, 0.0000, 0.0196,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0078, 0.0000, 0.0000,0.7373, 0.7725, 0.7843, 0.8118, 0.8118, 0.8000, 0.8118, 0.8118,0.8235, 0.8157, 0.7765, 0.8118, 0.8667, 0.2824, 0.0000, 0.0157,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0078, 0.0000, 0.0000,0.8431, 0.7765, 0.7961, 0.8078, 0.8157, 0.8039, 0.8118, 0.8118,0.8235, 0.8157, 0.7843, 0.7922, 0.8706, 0.2941, 0.0000, 0.0157,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000,0.8314, 0.7765, 0.8196, 0.8078, 0.8196, 0.8078, 0.8157, 0.8118,0.8275, 0.8078, 0.8039, 0.7765, 0.8667, 0.3137, 0.0000, 0.0118,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000,0.8000, 0.7882, 0.8039, 0.8157, 0.8118, 0.8039, 0.8275, 0.8039,0.8235, 0.8235, 0.8196, 0.7647, 0.8667, 0.3765, 0.0000, 0.0118,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000,0.7922, 0.7882, 0.8039, 0.8196, 0.8118, 0.8039, 0.8353, 0.8078,0.8235, 0.8196, 0.8235, 0.7608, 0.8510, 0.4118, 0.0000, 0.0078,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000,0.8000, 0.8000, 0.8039, 0.8157, 0.8118, 0.8039, 0.8431, 0.8118,0.8235, 0.8157, 0.8275, 0.7569, 0.8353, 0.4510, 0.0000, 0.0078,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.8000, 0.8118, 0.8118, 0.8157, 0.8078, 0.8078, 0.8431, 0.8235,0.8235, 0.8118, 0.8314, 0.7647, 0.8235, 0.4627, 0.0000, 0.0078,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000,0.7765, 0.8157, 0.8157, 0.8157, 0.8000, 0.8118, 0.8314, 0.8314,0.8235, 0.8118, 0.8275, 0.7686, 0.8118, 0.4745, 0.0000, 0.0039,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000,0.7765, 0.8235, 0.8118, 0.8157, 0.8078, 0.8196, 0.8353, 0.8314,0.8275, 0.8118, 0.8235, 0.7725, 0.8118, 0.4863, 0.0000, 0.0039,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.6745, 0.8235, 0.7961, 0.7882, 0.7804, 0.8000, 0.8118, 0.8039,0.8000, 0.7882, 0.8039, 0.7725, 0.8078, 0.4980, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,0.7373, 0.8667, 0.8392, 0.9176, 0.9255, 0.9333, 0.9569, 0.9569,0.9569, 0.9412, 0.9529, 0.8392, 0.8784, 0.6353, 0.0000, 0.0078,0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000,0.5451, 0.5725, 0.5098, 0.5294, 0.5294, 0.5373, 0.4902, 0.4863,0.4902, 0.4745, 0.4667, 0.4471, 0.5098, 0.2980, 0.0000, 0.0000,0.0000, 0.0000, 0.0000, 0.0000]]]),0)

此时,图像数据集的每个图像都是一个Tensor对象,Tensor对象的形状为(C, H, W),其中C表示图像的通道数,H表示图像的高度,W表示图像的宽度。对于灰度图像,C=1;对于RGB图像,C=3。Tensor对象的dtype为torch.float32。
Tensor对象的像素值范围为[0, 1],而PIL格式的图像的像素值范围为[0, 255]。Tensor对象的像素值是浮点数,而PIL格式的图像的像素值是整数。

train_data[1][0].shape  #图像数据(一个颜色通道:28*28,图像高度,图像宽度)
torch.Size([1, 28, 28])

上面输出的是FashionMNIST数据集中第0个图像的Tensor对象。Tensor对象的形状为(1, 28, 28),表示图像的通道数为1,高度为28,宽度为28。Tensor对象的dtype为torch.float32,表示数据类型为32位浮点数。Tensor对象的像素值范围为[0, 1],表示像素值是浮点数。

train_data[1][0].reshape(-1).shape  #将图像数据展平为一维张量
torch.Size([784])
http://www.dtcms.com/wzjs/184345.html

相关文章:

  • 实训做网站收获外贸网站都有哪些
  • 韩国男女做游戏视频网站seo关键词排名优化手机
  • 全网营销网站怎么做设计素材网站
  • 商务网站开发文档餐饮营销策划与运营
  • 广州建设银行网站首页营销目标分为三个方面
  • 重庆做网站哪家好东莞网络优化服务商
  • 小程序 网站建设 app 开发单页网站制作
  • 网站app开发哪家好品牌关键词优化
  • 网站开发中网页上传哪个浏览器看黄页最快夸克浏览器
  • 哪家公司产品设计的好seo关键词的优化技巧
  • 学校局域网站建设关键词排名霸屏代做
  • 男的和女的做那种短视频网站浅议网络营销论文
  • 哪里有网站建设哪家好晋中网站seo
  • 漳州网站建设多少钱搜索引擎查重
  • 苏州城乡住房建设局网站广东短视频seo营销
  • 公众号怎么开通视频号培训行业seo整站优化
  • 武进网站建设基本流程怎么在百度上做广告
  • 网站空间怎么回事沈阳市网站
  • 多语言外贸企业网站源码百度一下百度搜索入口
  • 河南网站优化推广宁波seo关键词优化制作
  • 重庆做网站引擎seo如何优化
  • 二手手机回收网站开发收录查询工具
  • 建设工程施工图审查系统网站百度总部公司地址在哪里
  • 制作企业网站公司排名营销型网站特点
  • 网站流量不正常网页设计个人主页
  • 163 com免费邮箱注册百度seo推广工具
  • 河南企业网站制作优化网站seo方案
  • 金华集团网站建设今日国家新闻
  • 滨州网站建设公司富阳网站seo价格
  • 凡科做网站行吗google搜索引擎入口