当前位置: 首页 > wzjs >正文

网站安全检测可以监测哪些内容风险信息二级网站怎么做

网站安全检测可以监测哪些内容风险信息,二级网站怎么做,wordpress银行模板下载,个人网站建设策划书怎么写写在前面 限于财力不足,本机上只有一个 GPU 可供使用,因此这部分的代码只能够稍作了解,能够使用的 GPU 也只有一个。 多 GPU 的数据并行:有几张卡,对一个小批量数据,有几张卡就分成几块,每个 …

写在前面

限于财力不足,本机上只有一个 GPU 可供使用,因此这部分的代码只能够稍作了解,能够使用的 GPU 也只有一个。

多 GPU 的数据并行:有几张卡,对一个小批量数据,有几张卡就分成几块,每个 GPU 分别计算梯度,然后加起来做并行。

从零开始实现

%matplotlib inline
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

简单网络

# 初始化模型参数
scale = 0.01
W1 = torch.randn(size=(20, 1, 3, 3)) * scale
b1 = torch.zeros(20)
W2 = torch.randn(size=(50, 20, 5, 5)) * scale
b2 = torch.zeros(50)
W3 = torch.randn(size=(800, 128)) * scale
b3 = torch.zeros(128)
W4 = torch.randn(size=(128, 10)) * scale
b4 = torch.zeros(10)
params = [W1, b1, W2, b2, W3, b3, W4, b4]# 定义模型
def lenet(X, params):h1_conv = F.conv2d(input=X, weight=params[0], bias=params[1])h1_activation = F.relu(h1_conv)h1 = F.avg_pool2d(input=h1_activation, kernel_size=(2, 2), stride=(2, 2))h2_conv = F.conv2d(input=h1, weight=params[2], bias=params[3])h2_activation = F.relu(h2_conv)h2 = F.avg_pool2d(input=h2_activation, kernel_size=(2, 2), stride=(2, 2))h2 = h2.reshape(h2.shape[0], -1)h3_linear = torch.mm(h2, params[4]) + params[5]h3 = F.relu(h3_linear)y_hat = torch.mm(h3, params[6]) + params[7]return y_hat# 交叉熵损失函数
loss = nn.CrossEntropyLoss(reduction='none')

向多个设备分发参数,并通过将模型参数复制到一个GPU:

def get_params(params, device): # 把一个参数复制到另外一个GPU上去new_params = [p.to(device) for p in params]for p in new_params:p.requires_grad_() #对每一个参数都需要计算梯度return new_paramsnew_params = get_params(params, d2l.try_gpu(0))
print('b1 权重:', new_params[1])
print('b1 梯度:', new_params[1].grad)

在这里插入图片描述
allreduce函数将所有向量相加,并将结果广播给所有GPU

def allreduce(data):for i in range(1, len(data)):data[0][:] += data[i].to(data[0].device)for i in range(1, len(data)):data[i][:] = data[0].to(data[i].device)data = [torch.ones((1, 2), device=d2l.try_gpu(i)) * (i + 1) for i in range(2)]
print('allreduce之前:\n', data[0], '\n', data[1])
allreduce(data)
print('allreduce之后:\n', data[0], '\n', data[1])

在这里插入图片描述
将一个小批量数据均匀地分布在多个 GPU 上

data = torch.arange(20).reshape(4, 5)
devices = [torch.device('cuda:0'), torch.device('cuda:1')]
split = nn.parallel.scatter(data, devices)
print('input :', data)
print('load into', devices)
print('output:', split)

在这里插入图片描述

#@save
def split_batch(X, y, devices):"""将X和y拆分到多个设备上"""assert X.shape[0] == y.shape[0]return (nn.parallel.scatter(X, devices),nn.parallel.scatter(y, devices))

在一个小批量上实现多GPU训练

def train_batch(X, y, device_params, devices, lr):X_shards, y_shards = split_batch(X, y, devices)# 在每个GPU上分别计算损失ls = [loss(lenet(X_shard, device_W), y_shard).sum()for X_shard, y_shard, device_W in zip(X_shards, y_shards, device_params)]for l in ls:  # 反向传播在每个GPU上分别执行l.backward()# 将每个GPU的所有梯度相加,并将其广播到所有GPUwith torch.no_grad():for i in range(len(device_params[0])):allreduce([device_params[c][i].grad for c in range(len(devices))])# 在每个GPU上分别更新模型参数for param in device_params:d2l.sgd(param, lr, X.shape[0]) # 在这里,我们使用全尺寸的小批量

定义训练模型:

def train(num_gpus, batch_size, lr):train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)devices = [d2l.try_gpu(i) for i in range(num_gpus)]# 将模型参数复制到num_gpus个GPUdevice_params = [get_params(params, d) for d in devices]num_epochs = 10animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])timer = d2l.Timer()for epoch in range(num_epochs):timer.start()for X, y in train_iter:# 为单个小批量执行多GPU训练train_batch(X, y, device_params, devices, lr)torch.cuda.synchronize()timer.stop()# 在GPU0上评估模型animator.add(epoch + 1, (d2l.evaluate_accuracy_gpu(lambda x: lenet(x, device_params[0]), test_iter, devices[0]),))print(f'测试精度:{animator.Y[0][-1]:.2f}{timer.avg():.1f}秒/轮,'f'在{str(devices)}')

在单个 GPU 上运行:
在这里插入图片描述
增加为 2 个 GPU
在这里插入图片描述
并行后并没有变快,可能有以下原因:

  • Data 读取比较慢
  • GPU 增加了,但是 batch_size 没有增加

多 GPU 的简洁实现

import torch
from torch import nn
from d2l import torch as d2l

简单网络

#@save
def resnet18(num_classes, in_channels=1):"""稍加修改的ResNet-18模型"""def resnet_block(in_channels, out_channels, num_residuals,first_block=False):blk = []for i in range(num_residuals):if i == 0 and not first_block:blk.append(d2l.Residual(in_channels, out_channels,use_1x1conv=True, strides=2))else:blk.append(d2l.Residual(out_channels, out_channels))return nn.Sequential(*blk)# 该模型使用了更小的卷积核、步长和填充,而且删除了最大汇聚层net = nn.Sequential(nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(64),nn.ReLU())net.add_module("resnet_block1", resnet_block(64, 64, 2, first_block=True))net.add_module("resnet_block2", resnet_block(64, 128, 2))net.add_module("resnet_block3", resnet_block(128, 256, 2))net.add_module("resnet_block4", resnet_block(256, 512, 2))net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))net.add_module("fc", nn.Sequential(nn.Flatten(),nn.Linear(512, num_classes)))return netnet = resnet18(10)
# 获取GPU列表
devices = d2l.try_all_gpus()
# 我们将在训练代码实现中初始化网络

训练

def train(net, num_gpus, batch_size, lr):train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)devices = [d2l.try_gpu(i) for i in range(num_gpus)]def init_weights(m):if type(m) in [nn.Linear, nn.Conv2d]:nn.init.normal_(m.weight, std=0.01)net.apply(init_weights)# 在多个GPU上设置模型net = nn.DataParallel(net, device_ids=devices)trainer = torch.optim.SGD(net.parameters(), lr)loss = nn.CrossEntropyLoss()timer, num_epochs = d2l.Timer(), 10animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])for epoch in range(num_epochs):net.train()timer.start()for X, y in train_iter:trainer.zero_grad()X, y = X.to(devices[0]), y.to(devices[0])l = loss(net(X), y)l.backward()trainer.step()timer.stop()animator.add(epoch + 1, (d2l.evaluate_accuracy_gpu(net, test_iter),))print(f'测试精度:{animator.Y[0][-1]:.2f}{timer.avg():.1f}秒/轮,'f'在{str(devices)}')

在单个 GPU 上训练网络

train(net, num_gpus=1, batch_size=256, lr=0.1)

在这里插入图片描述
使用2个GPU进行训练

train(net, num_gpus=2, batch_size=512, lr=0.2)

在这里插入图片描述

QA 思考

Q1:验证集准确率震荡较大是哪个参数影响最大呢?
A1:lr

Q2:为什么batch_size调的比较小,比如8,精度会一直在0.1左右,一直不怎么变化
A2:因为batch_size调的比较小的时候,lr 不能太大。

http://www.dtcms.com/wzjs/183602.html

相关文章:

  • 自己做微信电影网站怎么做自助建站系统开发
  • 上海企业制作网站有哪些徐州网页关键词优化
  • 南村网站建设微信推广费用一般多少
  • 成都 网站开发优化关键词是什么意思
  • dreamweaver网站建设搜索引擎优化结果
  • 黄浦区做网站百度搜索关键词规则
  • 江西师范大学两学一做专题网站百度手机卫士下载安装
  • 有什么好字体可以导入wordpress网站seo 优化
  • 郑州网站制作费用推广平台
  • 攸县住房和城乡规划建设局网站设计公司取名字大全集
  • 北京营销型网站建设培训站长统计app软件
  • b2c网站二次开发seo的优缺点
  • 做网站要求付全款旅游最新资讯
  • 做发包业务网站技师培训
  • 做餐饮网站建设今日搜索排行榜
  • 专业做包包的网站好爱站长
  • 网站title在哪里武汉百度seo网站优化
  • 内部网站管理办法网站seo源码
  • 江西城乡住房建设网站网站seo方案案例
  • 什么网站允许搭建建材企业网站推广方案
  • 教做家庭菜的网站头条新闻 最新消息条
  • 抓好门户网站 建设网络营销的5种方式
  • 上海网站建设招标搜索引擎优化seo信息
  • 重庆市建设网站首页网站建设报价方案
  • 网站开发工具简述百度官方app免费下载
  • 公司网站建设行业怎么样深圳seo优化外包
  • 专门做网上链接推广的网站网络整合营销4i原则是指
  • 网站建设公司软件开发谷歌浏览器入口
  • 个人网站模板王网络营销的专业知识
  • 网站显示图片标记百度推广代理加盟