当前位置: 首页 > wzjs >正文

优惠券购物网站怎么做免费发布信息的平台有哪些

优惠券购物网站怎么做,免费发布信息的平台有哪些,wordpress标题顺序,网站建设服务属于是什么费用BFS(广度优先搜索) 是一种用于遍历或搜索树/图的算法,逐层访问节点,适合解决最短路径、层级遍历等问题。 一、BFS 的核心思想 队列结构:用队列(先进先出)保存待处理的节点。 逐层扩散&#xff…

BFS(广度优先搜索)
是一种用于遍历或搜索树/图的算法,逐层访问节点,适合解决最短路径、层级遍历等问题。

一、BFS 的核心思想
队列结构:用队列(先进先出)保存待处理的节点。
逐层扩散:从起点开始,先处理当前层的所有节点,再处理下一层。
避免重复:用 visited 集合(或标记)记录已访问的节点,防止死循环。

二、代码框架

function BFS(start, target) {const queue = [start];      // 初始化队列const visited = new Set();   // 记录已访问的节点visited.add(start);let step = 0;               // 记录扩散的步数(可选)while (queue.length > 0) {// 处理当前层的所有节点const levelSize = queue.length;for (let i = 0; i < levelSize; i++) {const current = queue.shift();  // 从队头取出节点// 判断是否到达终点if (current === target) return step;// 将相邻未访问的节点加入队列for (const neighbor of getNeighbors(current)) {if (!visited.has(neighbor)) {queue.push(neighbor);visited.add(neighbor);}}}step++;  // 步数增加(视题目需求决定)}return -1; // 未找到路径
}

三、经典问题示例

1、二叉树层序遍历

function levelOrder(root) {if (!root) return [];const queue = [root];const result = [];while (queue.length > 0) {const levelSize = queue.length;const currentLevel = [];for (let i = 0; i < levelSize; i++) {const node = queue.shift();currentLevel.push(node.val);if (node.left) queue.push(node.left);if (node.right) queue.push(node.right);}result.push(currentLevel);}return result;
}

2、 迷宫最短路径
假设有一个二维网格,求从起点 (0,0) 到终点 (m-1, n-1) 的最短步数(1 表示障碍):

function shortestPath(grid) {const rows = grid.length, cols = grid[0].length;const queue = [[0, 0]];  // 起点const visited = new Set().add('0,0');let step = 0;const directions = [[1,0], [-1,0], [0,1], [0,-1]]; // 上下左右while (queue.length > 0) {const levelSize = queue.length;for (let i = 0; i < levelSize; i++) {const [x, y] = queue.shift();if (x === rows-1 && y === cols-1) return step; // 到达终点for (const [dx, dy] of directions) {const nx = x + dx, ny = y + dy;if (nx >=0 && nx < rows && ny >=0 && ny < cols && grid[nx][ny] === 0) {const key = `${nx},${ny}`;if (!visited.has(key)) {queue.push([nx, ny]);visited.add(key);}}}}step++;}return -1; // 无法到达
}

四、BFS 的适用场景

1、最短路径问题(无权图最短步数)
2、层级遍历(如二叉树层序遍历)
3、扩散类问题(如病毒传播模拟、社交网络层级关系)

五、注意事项

1、队列操作:JavaScript 中直接用数组的 shift() 效率较低,可优化为维护一个指针(类似双端队列)。
2、去重方式:根据问题场景,可以用 Set、哈希表或直接修改原数据(如标记为已访问)。
3、终止条件:根据问题提前判断是否到达目标。

http://www.dtcms.com/wzjs/181430.html

相关文章:

  • 网站文章伪原创如何做外贸网站推广服务
  • 东阳网站建设dyfwzx竞价托管
  • 烟台哪儿有可以做淘宝网站的网站整站优化推广方案
  • 个人做网站好吗沈阳seo优化排名公司
  • 深圳餐饮网站建设电商代运营公司100强
  • 做ppt哪个网站的图片好sem是什么基团
  • 新网免费空间seo网站推广怎么做
  • 网站建设公司广告5118站长工具箱
  • 汕头企业网站模板建站推广费用一般多少钱
  • 设计北京站长工具seo优化系统
  • 暴风seo论坛什么软件可以优化关键词
  • 西安市精神文明建设网站谷歌代理
  • 北京建筑大学seo关键词排名优化app
  • 网站怎么做搜素引擎上海seo培训中心
  • 知春路网站建设商丘优化公司
  • 制作政府网站网站推广方法大全
  • 找别人做网站的注意事项西安seo托管
  • 中国党风廉政建设网站产品推广计划
  • 营销型网站架构搜索引擎调词工具哪个好
  • 郑州汉狮做网站多少钱郑州网络推广平台
  • 山西住房建设部网站推广网站最有效办法
  • 深圳网站建设价格多少怎么做平台推广
  • 网站备案和服务器备案吗给网站做seo的价格
  • 建设旅游网站的目的淘宝seo软件
  • 代做网站关键词宁波seo外包公司
  • 做网站图片教程竞价托管就选微竞价
  • 网站文件上传好下一步怎么做网络营销的特点是什么?
  • 怎么用wix做网站百度网站链接提交
  • 淘宝网站建设方式杭州seo网站哪家好
  • 学生做网站期末作业排名推广网站