当前位置: 首页 > wzjs >正文

常州网站外包软件外包平台

常州网站外包,软件外包平台,wordpress 反斜杠 luj,邢台做企业网站目录前言1 文本切分的基本分类1.1 字符与标点切分1.2 分词(Tokenization)2 语义切分与主题分段2.1 固定长度滑动窗口法2.2 按段落或换行符切分2.3 语义主题切分方法3 模型输入友好的切分方式4 子词级切分与模型预处理4.1 子词切分方法4.2 优势5 实践建议…

目录

  • 前言
  • 1 文本切分的基本分类
    • 1.1 字符与标点切分
    • 1.2 分词(Tokenization)
  • 2 语义切分与主题分段
    • 2.1 固定长度滑动窗口法
    • 2.2 按段落或换行符切分
    • 2.3 语义主题切分方法
  • 3 模型输入友好的切分方式
  • 4 子词级切分与模型预处理
    • 4.1 子词切分方法
    • 4.2 优势
  • 5 实践建议与应用场景匹配
  • 结语

前言

在自然语言处理(NLP)的诸多任务中,文本切分是一个看似基础却至关重要的环节。无论是文本预处理、问答系统、文档检索,还是大模型的上下文输入控制,都离不开合理的切分策略。随着大语言模型和语义理解技术的发展,传统的“按标点分句”已难以满足复杂场景的需求。本文将系统梳理文本切分的主要方法,结合典型的应用场景,帮助开发者选型和落地实现。

1 文本切分的基本分类

文本切分可以理解为将一段文本划分成更小的语义单元,如句子、段落、子词等。根据切分的粒度和目标不同,方法可大致分为以下几类:

1.1 字符与标点切分

这是最基础的文本切分形式,适用于低层次的语言建模。

  • 按字符切分:主要用于拼音输入、字符级语言模型等场景,如将“今天天气很好”切为“今”“天”“天”“气”“很”“好”。
  • 按标点切分:适用于句子级建模任务,如问答系统、语法分析等。常用规则包括识别句号(。)、问号(?)、感叹号(!)等中文标点,英文则结合空格与缩写规则进行处理。
    在这里插入图片描述

1.2 分词(Tokenization)

分词是文本处理的关键步骤,尤其在中文语料中显得尤为重要。

语言分词方法常见工具
中文最大匹配法、HMM、CRF、深度学习jieba、HanLP、THULAC、LAC
英文空格与标点规则、正则匹配spaCy、NLTK、StanfordNLP

分词的准确性直接影响后续任务,如分类、情感分析、机器翻译等。

2 语义切分与主题分段

文本中不仅仅存在语言单位的边界,还存在语义或主题的自然变化。针对长文本(如文章、文档、报告等),我们需要更智能的“语义分块”方法。

2.1 固定长度滑动窗口法

此方法适用于大语言模型输入长度受限的场景,如 Transformer 模型的上下文窗口(通常为 2048~8192 token)。

  • 实现方式:将文本按固定长度(如 500 字)切分,搭配一定的重叠区(如 100 字)以避免语义割裂。
  • 优点:简单高效,适用于模型输入预处理。
  • 缺点:忽略上下文语义边界,可能割裂句子或段落。

2.2 按段落或换行符切分

适用于结构化文本(如网页、Markdown、新闻稿等),利用换行符 \n 或段落分隔符实现切分。

  • 优点:易于实现,保留文本原始结构。
  • 缺点:对非结构化文本或粘连性较强的语料效果有限。

2.3 语义主题切分方法

当文本段落之间存在主题转移时,传统方法就会失效。此时可使用语义切分方法,如:

  • TextTiling:基于词频分布计算相邻块之间的差异,检测主题转折点。
  • TopicTiling:使用句子嵌入向量(如BERT)对相邻句子计算语义相似度,以变化率识别切分点。
  • 动态窗口 + 句向量余弦相似度:识别语义突变区域。

这些方法更适合在文档摘要、段落聚类、知识问答等任务中应用。

3 模型输入友好的切分方式

大模型的输入上下文通常受到 token 限制,因此在实际应用中,对“如何切分得既完整又不超长”有较高要求。 RecursiveCharacterTextSplitter(递归字符切分)

以 LangChain 中的实现为代表,通过递归地按层级结构(段 → 句 → 词 → 字)寻找最合适的切分点:

from langchain.text_splitter import RecursiveCharacterTextSplittersplitter = RecursiveCharacterTextSplitter(chunk_size=500,chunk_overlap=100,separators=["\n\n", "\n", ".", " ", ""]
)

该方法兼顾结构性和上下文连贯性,广泛应用于:

  • 文档向量索引
  • Retrieval-Augmented Generation(RAG)
  • 多段摘要生成

4 子词级切分与模型预处理

对于 Transformer 类模型而言,文本往往不是以单词或句子为单位输入,而是进一步被切分为“子词”甚至“字节对”。
在这里插入图片描述

4.1 子词切分方法

方法特点应用模型
BPE(Byte Pair Encoding)统计合并高频字符对,适应新词GPT-2、RoBERTa
WordPiece类似 BPE,Google 提出,关注词频平衡BERT、ALBERT
SentencePiece无需空格,适用于中日韩语言T5、XLNet、BLOOM
Unigram基于概率建模的最优子词选择SentencePiece 默认模式

4.2 优势

  • 降低 OOV(未登录词)问题
  • 提高词表压缩效率
  • 支持跨语言建模

这些方法多在模型训练前预处理阶段完成,配合 Tokenizer 使用。

5 实践建议与应用场景匹配

以下为不同任务场景下推荐的文本切分策略:

应用场景推荐切分方法
中文问答系统中文分词 + 句子切分
多轮对话系统按发言人轮次切分
长文档检索(RAG)语义切分 + RecursiveSplitter
GPT 输入优化控制 Token 数 + 重叠分块
新闻摘要按段落 + 主题切分
OCR 文本清洗按行 + 可视区域切分

此外,在结合 Embedding 检索时,通常推荐使用“语义段落 + overlap”的方式构建向量库。

结语

文本切分是自然语言处理中的“前台无声,后台强大”的基础环节。从字符、句子到段落,从统计规则到语义建模,文本切分技术已经从简单的“分隔符划分”演进为“多层次、任务导向”的复杂工程。掌握并合理运用各种切分策略,不仅能提升系统的性能与鲁棒性,也为大模型应用打下坚实基础。

在未来的 NLP 和 AI 应用中,切分不仅是预处理的一步,更是理解语义、构建知识、提升智能的关键前奏。

http://www.dtcms.com/wzjs/172215.html

相关文章:

  • 南昌网站建设资讯企业网站推广方法实验报告
  • 福州绿光网站建设工作室seo优化方法
  • 专业零基础网站建设教学公司海外seo网站推广
  • 网站建设高级 上海seo学习论坛
  • 导航wordpress模板seo查询优化
  • 做酒店网站世界杯数据分析
  • 建站哪家好就要用兴田德润如何提高网站在搜索引擎中的排名
  • 忆唐网不做网站做品牌南宁白帽seo技术
  • 夏天做哪些网站致富2345导航网址
  • wap网站如何做杭州网站关键词排名优化
  • 企业网站建设新站百度提交网站收录入口
  • 上海网站建设类岗位百度首页网址
  • 企业独立官方网站网址怎么做淄博做网站的公司
  • 有没有做策划案例的网站免费seo课程
  • 网站的交互怎么做广告投放渠道
  • 网页设计师工作职责seo搜索排名影响因素主要有
  • 珠海pc网站建设网站创建的流程是什么
  • 网站建设q-9中国疫情今天最新消息
  • 台州住房和城乡建设部网站市场监督管理局电话
  • 电子商务网站建设的基本流程cpa推广联盟平台
  • 南海网站智能推广网站建设制作过程
  • office2017做网站seo在线优化平台
  • 政府类网站制作客户管理软件哪个好用
  • 环保企业网站建设现状软文网站大全
  • 网站图片自动下载郴州网络推广外包公司
  • 百姓网网站开发的意义seo指导
  • 有什么可以接单做的网站学it需要什么学历基础
  • 门户网站首页模板网络运营师资格证
  • 做石油系统的公司网站seo网站关键词优化怎么做
  • 襄阳网站建设企业广州品牌营销服务