当前位置: 首页 > wzjs >正文

网站后台素材网站查询系统

网站后台素材,网站查询系统,学做效果图的网站,朔州做网站的知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 最近临近毕业,事情有点多。如果有之前的基础的话,今天的难度相对较低。 后面说完几种模块提取特征的组合方式后,会提供整理的开源模块的文件。 现在大家已近可以去读这类…

知识点回顾:

  1. 通道注意力模块复习
  2. 空间注意力模块
  3. CBAM的定义

最近临近毕业,事情有点多。如果有之前的基础的话,今天的难度相对较低。

后面说完几种模块提取特征的组合方式后,会提供整理的开源模块的文件。

现在大家已近可以去读这类文章了,应该已经可以无压力看懂三四区的很多这类文章。

作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import matplotlib.pyplot as plt
import os# 设置随机种子以确保结果可复现
torch.manual_seed(42)
np.random.seed(42)
torch.backends.cudnn.deterministic = True# 定义CBAM模块
class ChannelAttention(nn.Module):def __init__(self, in_channels, reduction_ratio=16):super(ChannelAttention, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.fc = nn.Sequential(nn.Conv2d(in_channels, in_channels // reduction_ratio, 1, bias=False),nn.ReLU(),nn.Conv2d(in_channels // reduction_ratio, in_channels, 1, bias=False))def forward(self, x):avg_out = self.fc(self.avg_pool(x))max_out = self.fc(self.max_pool(x))out = avg_out + max_outreturn torch.sigmoid(out)class SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super(SpatialAttention, self).__init__()self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)out = torch.cat([avg_out, max_out], dim=1)out = self.conv(out)return torch.sigmoid(out)class CBAM(nn.Module):def __init__(self, in_channels, reduction_ratio=16, kernel_size=7):super(CBAM, self).__init__()self.channel_att = ChannelAttention(in_channels, reduction_ratio)self.spatial_att = SpatialAttention(kernel_size)def forward(self, x):x = x * self.channel_att(x)x = x * self.spatial_att(x)return x# 定义带有CBAM的CNN模型
class CBAM_CNN(nn.Module):def __init__(self, num_classes=10):super(CBAM_CNN, self).__init__()# ---------------------- 第一个卷积块(带CBAM) ----------------------self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)self.bn1 = nn.BatchNorm2d(32)  # 批归一化self.relu1 = nn.ReLU()self.pool1 = nn.MaxPool2d(kernel_size=2)self.cbam1 = CBAM(in_channels=32)  # 在第一个卷积块后添加CBAM# ---------------------- 第二个卷积块(带CBAM) ----------------------self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)self.bn2 = nn.BatchNorm2d(64)self.relu2 = nn.ReLU()self.pool2 = nn.MaxPool2d(kernel_size=2)self.cbam2 = CBAM(in_channels=64)  # 在第二个卷积块后添加CBAM# ---------------------- 第三个卷积块(带CBAM) ----------------------self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)self.bn3 = nn.BatchNorm2d(128)self.relu3 = nn.ReLU()self.pool3 = nn.MaxPool2d(kernel_size=2)self.cbam3 = CBAM(in_channels=128)  # 在第三个卷积块后添加CBAM# ---------------------- 全连接层 ----------------------self.fc1 = nn.Linear(128 * 4 * 4, 512)self.dropout = nn.Dropout(p=0.5)self.fc2 = nn.Linear(512, num_classes)def forward(self, x):# 第一个卷积块x = self.conv1(x)x = self.bn1(x)x = self.relu1(x)x = self.pool1(x)x = self.cbam1(x)  # 应用CBAM# 第二个卷积块x = self.conv2(x)x = self.bn2(x)x = self.relu2(x)x = self.pool2(x)x = self.cbam2(x)  # 应用CBAM# 第三个卷积块x = self.conv3(x)x = self.bn3(x)x = self.relu3(x)x = self.pool3(x)x = self.cbam3(x)  # 应用CBAM# 全连接层x = x.view(-1, 128 * 4 * 4)x = self.fc1(x)x = self.relu3(x)x = self.dropout(x)x = self.fc2(x)return x# 1. 数据预处理
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=transform
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4)# CIFAR-10的类别名称
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 创建TensorBoard的SummaryWriter
log_dir = 'runs/cifar10_mlp_experiment'
# 自动生成唯一目录(避免覆盖)
if os.path.exists(log_dir):i = 1while os.path.exists(f"{log_dir}_{i}"):i += 1log_dir = f"{log_dir}_{i}"# 创建日志目录并验证
os.makedirs(log_dir, exist_ok=True)
print(f"TensorBoard日志将保存在: {log_dir}")# 检查目录是否创建成功
if not os.path.exists(log_dir):raise FileNotFoundError(f"无法创建日志目录: {log_dir}")writer = SummaryWriter(log_dir)# 模型保存路径
model_save_dir = 'saved_models'
os.makedirs(model_save_dir, exist_ok=True)
best_model_path = os.path.join(model_save_dir, 'best_model.pth')
final_model_path = os.path.join(model_save_dir, 'final_model.pth')# 初始化模型并移至设备
model = CBAM_CNN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=3, factor=0.5)# 5. 训练模型(优化TensorBoard日志写入)
# 训练函数
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, writer, best_model_path):model.train()all_iter_losses = []iter_indices = []train_acc_history = []test_acc_history = []train_loss_history = []test_loss_history = []best_accuracy = 0.0for epoch in range(epochs):running_loss = 0.0correct = 0total = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_acc_history.append(epoch_train_acc)train_loss_history.append(epoch_train_loss)# 记录训练指标到TensorBoardwriter.add_scalar('Training Loss', epoch_train_loss, epoch)writer.add_scalar('Training Accuracy', epoch_train_acc, epoch)# 测试阶段model.eval()test_loss = 0correct_test = 0total_test = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_acc_history.append(epoch_test_acc)test_loss_history.append(epoch_test_loss)# 记录测试指标到TensorBoardwriter.add_scalar('Test Loss', epoch_test_loss, epoch)writer.add_scalar('Test Accuracy', epoch_test_acc, epoch)# 学习率调整scheduler.step(epoch_test_loss)# 保存最佳模型if epoch_test_acc > best_accuracy:best_accuracy = epoch_test_acctorch.save(model.state_dict(), best_model_path)print(f'在Epoch {epoch+1} 保存了最佳模型,准确率: {best_accuracy:.2f}%')print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘制损失和准确率曲线plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)# 保存最终模型torch.save(model.state_dict(), final_model_path)print(f'保存了最终模型到 {final_model_path}')# 刷新并关闭TensorBoard写入器writer.flush()writer.close()return best_accuracy# 绘图函数
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend()plt.grid(True)plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 执行训练
epochs = 50
print("开始使用带CBAM的CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, writer, best_model_path)
print(f"训练完成!最佳测试准确率: {final_accuracy:.2f}%")

Files already downloaded and verified

使用设备: cuda

TensorBoard日志将保存在: runs/cifar10_mlp_experiment_3

开始使用带CBAM的CNN训练模型... Epoch: 1/50 | Batch: 100/782 | 单Batch损失: 1.5347 | 累计平均损失: 1.7286 Epoch: 1/50 | Batch: 200/782 | 单Batch损失: 1.6409 | 累计平均损失: 1.5906 Epoch: 1/50 | Batch: 300/782 | 单Batch损失: 1.2963 | 累计平均损失: 1.4923 Epoch: 1/50 | Batch: 400/782 | 单Batch损失: 1.2433 | 累计平均损失: 1.4150 Epoch: 1/50 | Batch: 500/782 | 单Batch损失: 0.9714 | 累计平均损失: 1.3561 Epoch: 1/50 | Batch: 600/782 | 单Batch损失: 1.3788 | 累计平均损失: 1.3111 Epoch: 1/50 | Batch: 700/782 | 单Batch损失: 1.1744 | 累计平均损失: 1.2702 在Epoch 1 保存了最佳模型,准确率: 63.80% Epoch 1/50 完成 | 训练准确率: 55.06% | 测试准确率: 63.80% Epoch: 2/50 | Batch: 100/782 | 单Batch损失: 0.8755 | 累计平均损失: 0.9532 Epoch: 2/50 | Batch: 200/782 | 单Batch损失: 0.9961 | 累计平均损失: 0.9275 Epoch: 2/50 | Batch: 300/782 | 单Batch损失: 0.8786 | 累计平均损失: 0.9017 Epoch: 2/50 | Batch: 400/782 | 单Batch损失: 0.8517 | 累计平均损失: 0.8855 Epoch: 2/50 | Batch: 500/782 | 单Batch损失: 0.6945 | 累计平均损失: 0.8724 Epoch: 2/50 | Batch: 600/782 | 单Batch损失: 0.9180 | 累计平均损失: 0.8587 Epoch: 2/50 | Batch: 700/782 | 单Batch损失: 0.7349 | 累计平均损失: 0.8446 在Epoch 2 保存了最佳模型,准确率: 72.18% Epoch 2/50 完成 | 训练准确率: 70.55% | 测试准确率: 72.18% Epoch: 3/50 | Batch: 100/782 | 单Batch损失: 0.8370 | 累计平均损失: 0.6600 Epoch: 3/50 | Batch: 200/782 | 单Batch损失: 0.6755 | 累计平均损失: 0.6713 Epoch: 3/50 | Batch: 300/782 | 单Batch损失: 0.7057 | 累计平均损失: 0.6630

...

Epoch: 50/50 | Batch: 500/782 | 单Batch损失: 0.0000 | 累计平均损失: 0.0000 Epoch: 50/50 | Batch: 600/782 | 单Batch损失: 0.0000 | 累计平均损失: 0.0000 Epoch: 50/50 | Batch: 700/782 | 单Batch损失: 0.0000 | 累计平均损失: 0.0000 Epoch 50/50 完成 | 训练准确率: 100.00% | 测试准确率: 79.78%

@浙大疏锦行

http://www.dtcms.com/wzjs/170787.html

相关文章:

  • 哪个网站做视频有钱挣seo优化有百度系和什么
  • 西部网站管理助手4.0关键词优化seo公司
  • 图片做记录片的是哪个网站谷歌关键词搜索量数据查询
  • 注册岩土工程师整站优化的公司
  • 网站建设用图片百度地图导航2022最新版
  • 网站分哪些类型百度广告联盟
  • 网站地区词优化域名
  • 免费企业网站系统源码如何在百度上添加店铺的位置
  • 做网站用百度地图和天地图新浪体育世界杯
  • 腾讯云服务器学生机seo竞价
  • 六合网站建设seo黑帽教程视频
  • 两个网站合并建设实施方案seo优化排名推广
  • 公安网站模版友情链接交换
  • 做网站怎么销售河南郑州网站顾问
  • 建设网站时湖南长沙疫情最新消息
  • wordpress 一键seo产品优化推广
  • 猪八戒网做网站线上推广方式有哪些
  • 网站响应式布局黄页网站推广服务
  • 龙口网页设计搜索引擎优化专员
  • wordpress初始化密码短视频关键词seo优化
  • 蓝色大气企业网站模板自己怎么做一个网页
  • 做网站必须用tomcat网络推广引流是做什么的
  • 关于网站建设的书籍googleplay商店
  • 美国 做网站百度怎么推广网站
  • 自己做的网站 360不兼容重庆百度推广电话
  • 专门做照片的网站网站推广的几种方法
  • 设计干货很多的网站b2b平台有哪些
  • 网站备案资料 下载福州网站排名提升
  • 做网站建设培训排名优化软件
  • 美橙网站产品详情seo型网站