当前位置: 首页 > wzjs >正文

广东省住房和城乡建设厅网站网络营销的五个发展阶段

广东省住房和城乡建设厅网站,网络营销的五个发展阶段,打开一张图片后点击跳转到网站怎么做的,做网站原价商品打个横线上节,我们使用结核病基因数据,做了一个数据预处理的实操案例。例子中结核类型,包括结核,潜隐进展,对照和潜隐,四个类别。本节延续上个数据,进行了差异分析。 差异分析 计算差异指标step12 加载…

上节,我们使用结核病基因数据,做了一个数据预处理的实操案例。例子中结核类型,包括结核,潜隐进展,对照和潜隐,四个类别。本节延续上个数据,进行了差异分析。

差异分析 计算差异指标step12

加载数据

load("dataset_TB_LTBI_step8.Rdata")

构建差异比较矩阵

#样本列表
group_list=group_data_TB_LTBI$group_more #构建分组
design=model.matrix(~0+factor(group_list))
colnames(design)=levels(factor(group_list))#head(dataset_TB_LTBI)row.names(design)=colnames(dataset_TB_LTBI)
design   #得到分组矩阵:0代表不是,1代表是#str(design)library(limma)
##差异比较矩阵
contrast_matrix=makeContrasts(paste0(c('LTBI','TB'),collapse = '-'),levels = design)

计算差异基因指标

#step:lmFit
fit=lmFit(dataset_TB_LTBI,design)
fit2=contrasts.fit(fit,contrast_matrix)
#step:eBayes
fit3=eBayes(fit2)#step3:topTable
tempoutput=topTable(fit3,coef = 1,n=Inf)
DEG_M=na.omit(tempoutput)  #得到差异分析矩阵,重点看logFC和P值
head(DEG_M)  #查看数据'''logFC  AveExpr         t      P.Value    adj.P.Val        B
ASPHD2 -1.452777 8.415563 -12.38370 5.885193e-22 5.868863e-18 39.30255
C1QC   -3.978887 5.971935 -12.34993 6.954041e-22 5.868863e-18 39.14037
GBP1P1 -4.075057 5.607978 -12.24397 1.174622e-21 6.608814e-18 38.63087
GBP6   -3.225604 4.393248 -11.93968 5.320543e-21 1.692866e-17 37.16200
SDC3   -2.374911 7.388880 -11.92896 5.612049e-21 1.692866e-17 37.11012
LHFPL2 -1.705514 8.411180 -11.91494 6.017652e-21 1.692866e-17 37.04225
'''

#绘制前40个基因在不同样本之间的热图

library(pheatmap)
#绘制前40个基因在不同样本之间的热图
f40_gene=head(rownames(DEG_M),40)
f40_subset_matrix=dataset_TB_LTBI[f40_gene,]
head(f40_subset_matrix)
f40_subset_matrixx=t(scale(t(f40_subset_matrix)))  #数据标准化。。。数据标准化和归一化的区别:平移和压缩
pheatmap(f40_subset_matrixx)   #出图

差异分析 结果过滤筛选step13

res = DEG[,c("logFC","P.Value","adj.P.Val")]colnames(res)<-c("logFC","PValue","padj")colnames(res)
library(dplyr)
FC_filter =0.585 
P_filter=0.05
all_diff =res %>% filter(abs(logFC)>FC_filter) %>% filter(padj<P_filter)
res$id = rownames(res)
res=select(res,id,everything())
#write.table(res,'all_diff.txt',sep='\t',quote=F)up_diff=res %>% filter(logFC>FC_filter) %>% filter(padj<P_filter)
up_diff$id = rownames(up_diff)
up_diff=select(up_diff,id,everything())
#write.table(up_diff,'up_diff.txt',sep='\t',quote=F)down_diff=res %>% filter(logFC< -FC_filter ) %>% filter(padj<P_filter)
down_diff$id = rownames(down_diff)
down_diff=select(down_diff,id,everything())
#write.table(down_diff,'down_diff.txt',sep='\t',quote=F)group_data_clean <-function(data){# colnames(data)[c(9,10,11)] =c("logFC","PValue","padj")data[which(data$padj %in% NA),'sig'] <- 'no diff'data[which(data$logFC >= FC_filter & data$padj < 0.05),'sig'] <- 'up'data[which(data$logFC <= -FC_filter  & data$padj < 0.05),'sig'] <- 'down'data[which(abs(data$logFC) < FC_filter  | data$padj >= 0.05),'sig'] <- 'no diff'cat(" 上调",nrow(data[data$sig %in% "up", ]))cat(" 下调",nrow(data[data$sig %in% "down", ]))cat(" no fiff",nrow(data[data$sig %in% "no diff", ]))# filter_data = subset(data, data$sig == 'up' | data$sig == 'down')# filter_data$Geneid <- rownames(filter_data)return(data)  
}
limma_clean_res = group_data_clean(res)#上调 1381 下调 1432 no fiff 14066rownames(all_diff)dataset_TB_LTBI_DEG = dataset_TB_LTBI[rownames(all_diff),]
dim(dataset_TB_LTBI_DEG) #[1] 2813  102#&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
#+&&&&&&&&&&&&&&&&&&数据保存&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
save(DEG,res,all_diff,limma_clean_res,dataset_TB_LTBI_DEG,file = "DEG_TB_LTBI_step13.Rdata")
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#+&&&&&&&&&&&&&&&&&&数据保存&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
#&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

差异分析 绘制火山图step14

library(ggplot2)data <- limma_clean_res#################
# ggplot2绘制火山图
data$label <- c(rownames(data)[1:10],rep(NA,nrow(data) - 10))
#sizeGrWindow(12, 9)
pdf(file="差异基因火山图step14.pdf", width = 9, height = 6)
ggplot(data,aes(logFC,-log10(PValue),color = sig)) + xlab("log2FC") + geom_point(size = 0.6) + scale_color_manual(values=c("#00AFBB","#999999","#FC4E07")) + geom_vline(xintercept = c(-1,1), linetype ="dashed") +geom_hline(yintercept = -log10(0.05), linetype ="dashed") + theme(title = element_text(size = 15), text = element_text(size = 15)) + theme_classic() + geom_text(aes(label = label),size = 3, vjust = 1,hjust = -0.1)dev.off()

差异基因分析完毕,下面我们可以观察一下,这些基因富集在哪些通路之上。

http://www.dtcms.com/wzjs/165331.html

相关文章:

  • 网站设计建设简历网站建设与网站设计
  • 荔湾网站制作公司短视频代运营合作方案
  • 运营一般一个月多少钱百度seo排名优化教程
  • 中山网站制作工具河北百度推广seo
  • 包头做网站公司企业管理软件
  • 网站建设 福田淘宝怎么优化关键词步骤
  • 专注昆明网站建设新app推广去哪里找
  • 河南省建设工程招标网武汉seo软件
  • 网站开发文档需求模板鸿星尔克网络营销案例分析
  • 旅游网站模板图片免费隐私网站推广
  • 建设人才信息网是什么网站谷歌手机版浏览器官网
  • 网站收索功能怎么做想要导航页面推广app
  • 网站设计与网页制作毕业论文seo实战培训视频
  • 比优化更好的词是网站seo课设
  • 手机建设网站广告制作公司
  • 找国外公司做网站推广关键词
  • 宁波做外贸网站建设绍兴seo
  • 做细分行业信息网站搜狗输入法下载安装
  • 上海学做网站怎么进行推广
  • 没有相应营业执照怎么做网站免费发外链平台
  • 淘宝刷网站建设seo入门教程
  • 南宁网站建设优化合理使用说明
  • 关于我们做网站网络营销的作用
  • 廊坊企业建站广州seo运营
  • 团购网站模板下载国内搜索引擎大全
  • 江阴网站推广百度关键词搜索次数
  • 网页设计尺寸厘米seo基础视频教程
  • 2018新网站做外链品牌网站设计
  • 南宁建设网站制作百度推广助手app
  • 做网站用什么系统较好app拉新接单平台