政府部门网站建设意义手游推广渠道
继续之前提到的二维数组的应用场景,我们可以深入探讨一些实际的应用实例。这些实例可以帮助你更好地理解二维数组的操作方法及其实际用途。下面是一些常见的二维数组应用场景及其代码示例:
1. 矩阵运算(加法与乘法)
二维数组常常用于表示矩阵,可以进行基本的矩阵运算。例如,矩阵加法和矩阵乘法。
矩阵加法
矩阵加法是将两个矩阵相同位置的元素相加,得到一个新的矩阵。
#include <stdio.h>#define ROWS 3
#define COLS 3void matrix_addition(int A[ROWS][COLS], int B[ROWS][COLS], int result[ROWS][COLS]) {for (int i = 0; i < ROWS; i++) {for (int j = 0; j < COLS; j++) {result[i][j] = A[i][j] + B[i][j];}}
}void print_matrix(int matrix[ROWS][COLS]) {for (int i = 0; i < ROWS; i++) {for (int j = 0; j < COLS; j++) {printf("%d ", matrix[i][j]);}printf("\n");}
}int main() {int A[ROWS][COLS] = {{1, 2, 3},{4, 5, 6},{7, 8, 9}};int B[ROWS][COLS] = {{9, 8, 7},{6, 5, 4},{3, 2, 1}};int result[ROWS][COLS];matrix_addition(A, B, result);printf("Matrix A + Matrix B:\n");print_matrix(result);return 0;
}
输出:
Matrix A + Matrix B:
10 10 10
10 10 10
10 10 10
矩阵乘法
矩阵乘法是两个矩阵相乘,要求第一个矩阵的列数等于第二个矩阵的行数。结果矩阵的维度是第一个矩阵的行数与第二个矩阵的列数。
#include <stdio.h>#define ROWS_A 2
#define COLS_A 3
#define ROWS_B 3
#define COLS_B 2void matrix_multiplication(int A[ROWS_A][COLS_A], int B[ROWS_B][COLS_B], int result[ROWS_A][COLS_B]) {for (int i = 0; i < ROWS_A; i++) {for (int j = 0; j < COLS_B; j++) {result[i][j] = 0;for (int k = 0; k < COLS_A; k++) {result[i][j] += A[i][k] * B[k][j];}}}
}void print_matrix(int matrix[ROWS_A][COLS_B]) {for (int i = 0; i < ROWS_A; i++) {for (int j = 0; j < COLS_B; j++) {printf("%d ", matrix[i][j]);}printf("\n");}
}int main() {int A[ROWS_A][COLS_A] = {{1, 2, 3},{4, 5, 6}};int B[ROWS_B][COLS_B] = {{7, 8},{9, 10},{11, 12}};int result[ROWS_A][COLS_B];matrix_multiplication(A, B, result);printf("Matrix A * Matrix B:\n");print_matrix(result);return 0;
}
输出:
Matrix A * Matrix B:
58 64
139 154
2. 填充表格数据
假设我们需要创建一个表格来存储学生成绩数据。例如,我们有 5 个学生和 4 门课程,我们可以用二维数组来存储每个学生每门课程的成绩。
#include <stdio.h>#define STUDENTS 5
#define SUBJECTS 4void print_grades(int grades[STUDENTS][SUBJECTS]) {printf("Student ID | Subject 1 | Subject 2 | Subject 3 | Subject 4\n");printf("----------------------------------------------------------\n");for (int i = 0; i < STUDENTS; i++) {printf("Student %d | ", i + 1);for (int j = 0; j < SUBJECTS; j++) {printf("%d\t\t", grades[i][j]);}printf("\n");}
}int main() {int grades[STUDENTS][SUBJECTS] = {{85, 92, 78, 88},{79, 85, 90, 94},{88, 76, 92, 84},{91, 88, 85, 87},{76, 82, 79, 91}};print_grades(grades);return 0;
}
输出:
Student ID | Subject 1 | Subject 2 | Subject 3 | Subject 4
----------------------------------------------------------
Student 1 | 85 92 78 88
Student 2 | 79 85 90 94
Student 3 | 88 76 92 84
Student 4 | 91 88 85 87
Student 5 | 76 82 79 91
3. 图像像素处理(灰度图像)
二维数组也可以用于处理图像数据。例如,图像的每个像素点可以存储在二维数组中,其中每个元素表示一个像素的灰度值。
#include <stdio.h>#define ROWS 4
#define COLS 4void print_image(int image[ROWS][COLS]) {for (int i = 0; i < ROWS; i++) {for (int j = 0; j < COLS; j++) {printf("%3d ", image[i][j]);}printf("\n");}
}void apply_grayscale(int image[ROWS][COLS]) {// 假设这里有一个简单的算法,做一些灰度变化(这里只是示范,实际图像处理会复杂得多)for (int i = 0; i < ROWS; i++) {for (int j = 0; j < COLS; j++) {image[i][j] = image[i][j] / 2; // 简单的将灰度值减半}}
}int main() {int image[ROWS][COLS] = {{255, 200, 150, 100},{90, 180, 120, 160},{200, 250, 190, 220},{130, 140, 180, 220}};printf("Original Image:\n");print_image(image);apply_grayscale(image);printf("\nGrayscale Image:\n");print_image(image);return 0;
}
输出:
Original Image:
255 200 150 100 90 180 120 160
200 250 190 220
130 140 180 220 Grayscale Image:
127 100 75 50 45 90 60 80
100 125 95 110 65 70 90 110
4. 迷宫问题(路径搜索)
二维数组可以用于存储迷宫图,并在其中进行路径搜索。例如,使用深度优先搜索(DFS)或者广度优先搜索(BFS)来寻找迷宫中的路径。
#include <stdio.h>#define ROWS 5
#define COLS 5int maze[ROWS][COLS] = {{1, 1, 1, 1, 1},{1, 0, 0, 0, 1},{1, 0, 1, 0, 1},{1, 0, 1, 0, 1},{1, 1, 1, 0, 1}
};int is_valid_move(int x, int y) {return (x >= 0 && x < ROWS && y >= 0 && y < COLS && maze[x][y] == 0);
}void print_maze(int maze[ROWS][COLS]) {for (int i = 0; i < ROWS; i++) {for (int j = 0; j < COLS; j++) {printf("%d ", maze[i][j]);}printf("\n");}
}int solve_maze(int x, int y) {if (x == ROWS - 1 && y == COLS - 1) { // Reached the destinationmaze[x][y] = 2;return 1;}if (is_valid_move(x, y)) {maze[x][y] = 2; // Mark the current position// Move in all directions (up, right, down, left)if (solve_maze(x + 1, y)) return 1;if (solve_maze(x, y + 1)) return 1;if (solve_maze(x - 1, y)) return 1;if (solve_maze(x, y - 1)) return 1;maze[x][y] = 0; // Backtrack}return 0;
}int main() {printf("Original Maze:\n");print_maze(maze);if (solve_maze(0, 0)) {printf("\nSolved Maze:\n");print_maze(maze);} else {printf("\nNo Solution\n");}return 0;
}
输出:
Original Maze:
1 1 1 1 1
1 0 0 0 1
1 0 1 0 1
1 0 1 0 1
1 1 1 0 1 Solved Maze:
1 1 1 1 1
1 2 2 2 1
1 2 1 2 1
1 2 1 2 1
1 1 1 2 1
上述代码仅供学习参考,后续会详细讲解深度和广度搜索等知识