当前位置: 首页 > wzjs >正文

java做网站要学什么业务推广平台

java做网站要学什么,业务推广平台,网站开发网络公司兼职,柳州做网站那家好引言 MMdetection作为一款集中了多种目标检测方法的框架,是研究2D视觉科研人员必备的框架,然而,自带的mmdet.visualization打印图片会使图片变质,这里提供一个自动推理保存图片的脚本,同时支持多种格式标签的保存。 …

引言

MMdetection作为一款集中了多种目标检测方法的框架,是研究2D视觉科研人员必备的框架,然而,自带的mmdet.visualization打印图片会使图片变质,这里提供一个自动推理保存图片的脚本,同时支持多种格式标签的保存。

代码实现

import os
from mmdet.apis import init_detector, inference_detector
import torch
import cv2# -------------------在使用前请指定以下参数-------------------------
# 1.输出文件夹,新建并将结果输出到该文件夹下
output_dir = 'result'  # 修改变量名避免冲突
# 2.待检测图片文件夹
image_dir = 'Dataset_depth_COCO/val'  
# 3.模型配置文件路径,py格式
config_file = '/home/hary/ctc/mmdetection/work_dirs/freeanchor_r50_fpn_1x_coco/freeanchor_r50_fpn_1x_coco.py'  
# 4.模型权重文件路径,pth格式
checkpoint_file = 'work_dirs/freeanchor_r50_fpn_1x_coco/epoch_50.pth'  
# 5.置信度阈值,0-1之间的数值,MMdetection是给出100个预测,包含大量无效预测,需要过滤
confidence_threshold = 0.3  
# 6.save_mod标签保存格式,可选参数:None, xywh, xyxy, YOLO, COCO
save_mod = 'YOLO'
# 7.指定标签名称 
class_names = ['shallow_box_rgb', 'shallow_half_box_rgb']   # 数据集类别,注意和colors长度一致
# 8.标签颜色数组
colors = {0: (0, 0, 255),    # 红色(BGR格式)1: (255, 0, 0)     # 蓝色(BGR格式)
}
# -----------------------指定参数完毕-----------------------------# 确保输出目录存在
os.makedirs(output_dir, exist_ok=True)# 创建子目录存放标注后的标签
if save_mod:label_dir = os.path.join(output_dir, 'predicted_label')os.makedirs(label_dir, exist_ok=True)# 初始化模型
model = init_detector(config_file, checkpoint_file, device='cuda' if torch.cuda.is_available() else 'cpu')# 支持的图像扩展名
valid_extensions = ['.jpg', '.jpeg', '.png', '.bmp']# 遍历图片文件夹
image_files = [f for f in os.listdir(image_dir) if os.path.splitext(f)[1].lower() in valid_extensions]for i, filename in enumerate(image_files):img_path = os.path.join(image_dir, filename)# 获取模型推理的结果result = inference_detector(model, img_path)print(f"({i + 1}/{len(image_files)}) {filename} has detected!")# 过滤置信度大于阈值的结果if hasattr(result, 'pred_instances'):valid_idx = result.pred_instances.scores > confidence_threshold  filtered_bboxes = result.pred_instances.bboxes[valid_idx]  # 模型推理的检测框:[x_min, y_min, x_max, y_max]filtered_scores = result.pred_instances.scores[valid_idx]  # 置信度filtered_labels = result.pred_instances.labels[valid_idx]  # 模型推理类别else:# 兼容旧版本mmdet的输出格式filtered_bboxes = []filtered_scores = []filtered_labels = []for class_id, class_result in enumerate(result):if len(class_result) > 0:for bbox in class_result:if bbox[4] > confidence_threshold:filtered_bboxes.append(bbox[:4])filtered_scores.append(bbox[4])filtered_labels.append(class_id)filtered_bboxes = torch.tensor(filtered_bboxes)filtered_scores = torch.tensor(filtered_scores)filtered_labels = torch.tensor(filtered_labels)img = cv2.imread(img_path)if img is None:print(f"Warning: Could not read image {img_path}, skipping")continue# 绘制每个检测框for bbox, score, label in zip(filtered_bboxes, filtered_scores, filtered_labels):# 转换为整数坐标x1, y1, x2, y2 = map(int, bbox[:4])class_id = int(label)# 获取颜色和标签color = colors.get(class_id, (0, 255, 0))   # 默认绿色label_name = class_names[class_id] if class_id < len(class_names) else f"class_{class_id}"# 绘制矩形框cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)# 构建显示文本 (类别 + 置信度)text = f"{label_name}: {score:.2f}"# 计算文本位置 (避免超出图像顶部)y_text = y1 - 10 if y1 - 10 > 10 else y1 + 20cv2.putText(img, text, (x1, y_text),cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 2)# 保存结果output_path = os.path.join(output_dir, filename)cv2.imwrite(output_path, img)print(f"Saved result to: {output_path}")# 处理标签if not save_mod:continueelse:# 准备输出标签路径img_name = os.path.splitext(filename)[0]  # 得到 "1112_14-rgb"txt_name = f"{img_name}.txt"  # 得到 "1112_14-rgb.txt"label_path = os.path.join(label_dir, txt_name)# 升维,方便后续张量拼接filtered_labels = filtered_labels.unsqueeze(1)filtered_scores = filtered_scores.unsqueeze(1)# 获取图片高宽img_h, img_w = img.shape[:2]if save_mod == 'xyxy':   # [x_min, y_min, x_max, y_max]predict_label = torch.cat([filtered_labels, filtered_bboxes, filtered_scores], dim=1)with open(label_path, 'w') as f:for row in predict_label:# 第一列转整数,后续列保留4位小数formatted_row = [f"{int(row[0])}"] + [f"{x:.6f}" for x in row[1:]]f.write(" ".join(formatted_row) + "\n")elif save_mod == 'COCO':  # [x_min, y_min, width, height]filtered_bboxes[:, 2] = filtered_bboxes[:, 2] - filtered_bboxes[:, 0]filtered_bboxes[:, 3] = filtered_bboxes[:, 3] - filtered_bboxes[:, 1]predict_label = torch.cat([filtered_labels, filtered_bboxes, filtered_scores], dim=1)with open(label_path, 'w') as f:for row in predict_label:# 第一列转整数,后续列保留4位小数formatted_row = [f"{int(row[0])}"] + [f"{x:.6f}" for x in row[1:]]f.write(" ".join(formatted_row) + "\n")elif save_mod == 'xywh':   # [x_center, y_center, width, height]filtered_bboxes[:, 2] = filtered_bboxes[:, 2] - filtered_bboxes[:, 0]filtered_bboxes[:, 3] = filtered_bboxes[:, 3] - filtered_bboxes[:, 1]filtered_bboxes[:, 0] = filtered_bboxes[:, 0] + filtered_bboxes[:, 2] / 2filtered_bboxes[:, 1] = filtered_bboxes[:, 1] + filtered_bboxes[:, 3] / 2predict_label = torch.cat([filtered_labels, filtered_bboxes, filtered_scores], dim=1)with open(label_path, 'w') as f:for row in predict_label:# 第一列转整数,后续列保留4位小数formatted_row = [f"{int(row[0])}"] + [f"{x:.6f}" for x in row[1:]]f.write(" ".join(formatted_row) + "\n")elif save_mod == 'YOLO':  # [x_center, y_center, width, height],并归一化filtered_bboxes[:, 2] = filtered_bboxes[:, 2] - filtered_bboxes[:, 0]filtered_bboxes[:, 3] = filtered_bboxes[:, 3] - filtered_bboxes[:, 1]# 再转换为[x_yolo, y_yolo, w, h]filtered_bboxes[:, 0] = filtered_bboxes[:, 0] + filtered_bboxes[:, 2] / 2filtered_bboxes[:, 1] = filtered_bboxes[:, 1] + filtered_bboxes[:, 3] / 2filtered_bboxes[:, 0] = filtered_bboxes[:, 0] / img_wfiltered_bboxes[:, 2] = filtered_bboxes[:, 2] / img_wfiltered_bboxes[:, 1] = filtered_bboxes[:, 1] / img_hfiltered_bboxes[:, 3] = filtered_bboxes[:, 3] / img_hpredict_label = torch.cat([filtered_labels, filtered_bboxes, filtered_scores], dim=1)with open(label_path, 'w') as f:for row in predict_label:# 第一列转整数,后续列保留4位小数formatted_row = [f"{int(row[0])}"] + [f"{x:.6f}" for x in row[1:]]f.write(" ".join(formatted_row) + "\n")else:print("The save_mod parameter is illegal!")break

结果展示

运行界面:

保存结果:

图片展示:

http://www.dtcms.com/wzjs/153964.html

相关文章:

  • 网站忧化靠谱seo百度竞价点击价格
  • java可以做网站开发吗长春网站制作设计
  • java做网站的要求自建网站
  • 厦门建设公司网站南京seo建站
  • 高端网站建设企业公司1688关键词怎么优化
  • 网址导航网站制作工具天津seo培训机构
  • ps 做儿童摄影网站首页seo销售代表招聘
  • 网站建设存在的困难关键词搜索引擎优化推广
  • 360建筑网证书估价做网站seo怎么赚钱
  • heritrix做网站深圳广告策划公司
  • g2g有哪些网站招聘网站排名
  • 龙华网站开发2023年8月新冠又来了
  • 江苏首天建设集团网站seo网站推广简历
  • 重庆网站设计制作案例seo包括哪些方面
  • 确定目标是指优化公司排行榜
  • 做酒店需要怎么上网站湘潭营销型网站建设
  • 网站建设周记300字企业网站seo托管怎么做
  • 二级网站建设百度空间登录入口
  • 建设通查询设通网站我想自己建立一个网站
  • 个人网页设计与制作模板教程湖南网站seo公司
  • ppt模板千库网北京网站优化方式
  • 网站优化过度被k网络优化工程师前景如何
  • 宁波网络营销推广制作嘉兴seo外包平台
  • 网站连接跳转怎么做网站推广排名优化
  • 济南网站建设制作郑州百度推广公司地址
  • 招标网站建设申请长沙网址seo
  • 怎么搭建自己的网站平台阿里巴巴推广
  • ps做的网站怎么到网站上预览东莞网络营销优化
  • cdr做好排班怎么做网站如何在百度上发布自己的文章
  • 阳谷聊城做网站免费b站推广网站链接