当前位置: 首页 > wzjs >正文

影视制作宣传片公司seo是什么姓

影视制作宣传片公司,seo是什么姓,义乌官网制作网站,做网站什么样的域名好408答疑 文章目录 五、图的代码实操图的存储邻接矩阵结构定义初始化插入顶点获取顶点位置在顶点 v1 和 v2 之间插入边获取第一个邻接顶点获取下一个邻接顶点显示图 邻接表结构定义初始化图插入顶点获取顶点位置在顶点 v1 和 v2 之间插入边获取第一个邻接顶点获取下一个邻接顶点…

408答疑


文章目录

  • 五、图的代码实操
    • 图的存储
      • 邻接矩阵
        • 结构定义
        • 初始化
        • 插入顶点
        • 获取顶点位置
        • 在顶点 v1 和 v2 之间插入边
        • 获取第一个邻接顶点
        • 获取下一个邻接顶点
        • 显示图
      • 邻接表
        • 结构定义
        • 初始化图
        • 插入顶点
        • 获取顶点位置
        • 在顶点 v1 和 v2 之间插入边
        • 获取第一个邻接顶点
        • 获取下一个邻接顶点
        • 显示图
    • 图的遍历
      • 深度优先遍历
        • 算法思想
          • 算法步骤
          • 算法特点
        • 邻接矩阵
        • 邻接表
      • 广度优先遍历
        • 算法思想
        • 邻接矩阵
        • 邻接表
    • 图的应用
      • BFS算法求解单源最短路径问题
      • 拓扑排序
  • 六、参考资料
    • 鲍鱼科技课件
    • 26王道考研书


五、图的代码实操

图的存储

邻接矩阵

结构定义
typedef struct GraphMtx {int numV; // 顶点个数int numE; // 边的条数ElemType vList[MAX_VERTEX_SIZE]; // 顶点空间int edge[MAX_VERTEX_SIZE][MAX_VERTEX_SIZE]; // 边的矩阵
} GraphMtx;
初始化
  • 初始化图的顶点数和边数为 0,并将邻接矩阵的所有元素设置为 0。
void initGraph(GraphMtx *g) {g->numV = 0;g->numE = 0;for (int i = 0; i < MAX_VERTEX_SIZE; ++i) {for (int j = 0; j < MAX_VERTEX_SIZE; ++j)g->edge[i][j] = 0;}
}
插入顶点
  • 在图中插入一个新顶点,如果顶点数超过最大值则不插入。
void insertVertex(GraphMtx *g, ElemType vertex) {if (g->numV >= MAX_VERTEX_SIZE)return;g->vList[g->numV] = vertex;g->numV++;
}
获取顶点位置
  • 返回顶点在顶点列表中的位置,如果不存在则返回 -1。
int getPosVertex(GraphMtx *g, ElemType vertex) {for (int i = 0; i < g->numV; ++i) {if (g->vList[i] == vertex)return i;}return -1; // 没有要查找的顶点
}
在顶点 v1 和 v2 之间插入边
  • 在图中插入一条从顶点 vertex1 到顶点 vertex2 的边。
void insertEdge(GraphMtx *g, ElemType vertex1, ElemType vertex2) {int v1 = getPosVertex(g, vertex1);int v2 = getPosVertex(g, vertex2);// 插入v1->v2边g->edge[v1][v2] = 1;// 若是无向图,则插入v2->v1边//g->edge[v2][v1] = 1;g->numE++;
}
获取第一个邻接顶点
  • 获取给定顶点的第一个邻接顶点。
int getFirstNeighbor(GraphMtx *g, ElemType vertex) {int v = getPosVertex(g, vertex);if (v == -1)return -1; // 没有邻接顶点for (int j = 0; j < g->numV; ++j) {if (g->edge[v][j] == 1)return j; // 返回邻接顶点}return -1; // 没有邻接顶点
}
获取下一个邻接顶点
  • 获取给定顶点的下一个邻接顶点。
int getNextNeighbor(GraphMtx *g, ElemType vertex1, ElemType vertex2) {int v1 = getPosVertex(g, vertex1);int v2 = getPosVertex(g, vertex2);if (v1 == -1 || v2 == -1)return -1;for (int j = v2 + 1; j < g->numV; ++j) {if (g->edge[v1][j] == 1)return j;}return -1;
}
显示图
  • 显示图的邻接矩阵。
void showGraph(GraphMtx *g) {printf(" ");for (int i = 0; i < g->numV; ++i)printf(" %c", g->vList[i]);printf("\n");for (int i = 0; i < g->numV; ++i) {printf("%c ", g->vList[i]);for (int j = 0; j < g->numV; ++j) {printf("%d ", g->edge[i][j]);}printf("\n");}
}

邻接表

结构定义
typedef struct Edge {int dest; // 目标顶点的下标struct Edge *next; // 结点指针
} Edge;typedef struct Vertex {ElemType data;   // 顶点数据Edge *first; // 指向边的起始指针
} Vertex;typedef struct GraphLnk {int numV; // 顶点数int numE; // 边的条数Vertex nodeTable[MAX_VERTEX_SIZE];
} GraphLnk;
初始化图
  • 初始化图的顶点数和边数为 0,并将邻接表的所有元素设置为 NULL。
void initGraph(GraphLnk *g) {g->numV = 0;g->numE = 0;for (int i = 0; i < MAX_VERTEX_SIZE; ++i)g->nodeTable[i].first = NULL;
}
插入顶点
  • 在图中插入一个新顶点,如果顶点数超过最大值则不插入。
void insertVertex(GraphLnk *g, ElemType vertex) {if (g->numV >= MAX_VERTEX_SIZE)return;g->nodeTable[g->numV].data = vertex;g->numV++;
}
获取顶点位置
  • 返回顶点在顶点列表中的位置,如果不存在则返回 -1。
int getPosVertex(GraphLnk *g, ElemType vertex) {for (int i = 0; i < g->numV; ++i) {if (g->nodeTable[i].data == vertex)return i;}return -1; // 没有要查找的顶点
}
在顶点 v1 和 v2 之间插入边
  • 在图中插入一条从顶点 vertex1 到顶点 vertex2 的边。
void insertEdge(GraphLnk *g, ElemType vertex1, ElemType vertex2) {int v1 = getPosVertex(g, vertex1);int v2 = getPosVertex(g, vertex2);// v1->v2Edge *e = (Edge*)malloc(sizeof(Edge));e->dest = v2;e->next = g->nodeTable[v1].first;g->nodeTable[v1].first = e;// 	若是无向图,则插入v2->v1边//e = (Edge*)malloc(sizeof(Edge));//e->dest = v1;//e->next = g->nodeTable[v2].first;//g->nodeTable[v2].first = e;g->numE++;
}
获取第一个邻接顶点
  • 获取给定顶点的第一个邻接顶点。
int getFirstNeighbor(GraphLnk *g, ElemType vertex) {int v = getPosVertex(g, vertex);if (v == -1)return -1; // 没有邻接顶点if (g->nodeTable[v].first != NULL)return g->nodeTable[v].first->dest;return -1; // 没有邻接顶点
}
获取下一个邻接顶点
  • 获取给定顶点的下一个邻接顶点。
int getNextNeighbor(GraphLnk *g, ElemType vertex1, ElemType vertex2) {int v1 = getPosVertex(g, vertex1);int v2 = getPosVertex(g, vertex2);if (v1 == -1 || v2 == -1)return -1;Edge *p = g->nodeTable[v1].first;while (p->dest != v2)p = p->next;p = p->next;if (p != NULL)return p->dest;return -1;
}
显示图
  • 显示图的邻接表。
void showGraph(GraphLnk *g) {for (int i = 0; i < g->numV; ++i) {printf("%d %c : ", i, g->nodeTable[i].data);Edge *p = g->nodeTable[i].first;while (p != NULL) {printf("%d->", p->dest);p = p->next;}printf("Nil.\n");}
}

图的遍历

深度优先遍历

算法思想

深度优先遍历(DFS)是一种用于遍历或搜索图或树的算法。该算法使用栈(显式或递归)来实现非递归约的遍历过程。算法从图中的某一顶点开始,沿着路径深入访问尽可能远的顶点,直到不能再深入为止,然后回溯并访问其他路径。

算法步骤
  1. 访问起始顶点:选择图中的某一顶点作为起始点,并标记为已访问。
  2. 访问邻接顶点:访问该顶点的所有未被访问的邻接顶点,对每个邻接顶点递归地调用DFS。
  3. 回溯:当当前路径无法继续深入时,回溯到最近的已访问顶点,检查是否有其他未访问的邻接顶点。
  4. 重复过程:重复上述过程,直到图中所有顶点都被访问。
算法特点
  • DFS 相当于二叉树中的前序遍历。
  • 使用临时空间来标记结点是否被访问过。
  • 适用于图的连通性检测、拓扑排序等场景。
邻接矩阵
void DFS(GraphMtx *g, ElemType vertex) {printf("%c->", vertex);int v = getPosVertex(g, vertex);visit[v] = 1; // 标记顶点int w = getFirstNeighbor(g, vertex);while (w != -1) {if (!visit[w]) {DFS(g, g->vList[w]);}w = getNextNeighbor(g, g->vList[v], g->vList[w]); //(g, v1, v2)}
}
邻接表
void DFS(GraphLnk *g, ElemType vertex) {printf("%c->", vertex);int v = getPosVertex(g, vertex);visit[v] = 1; // 标记顶点int w = getFirstNeighbor(g, vertex);while (w != -1) {if (!visit[w]) {DFS(g, g->nodeTable[w].data);}w = getNextNeighbor(g, g->nodeTable[v].data, g->nodeTable[w].data); //(g, v1, v2)}
}

广度优先遍历

算法思想
  1. 初始化

    • 标记起始顶点为已访问。
    • 将起始顶点入队。
  2. 遍历队列:当队列不为空时,执行以下操作。

    • 从队列中取出一个顶点。
    • 访问该顶点的所有未访问过的邻接顶点。
    • 将这些邻接顶点标记为已访问,并加入队列。
  3. 重复步骤2,直到队列为空,即所有可达顶点都被访问。

邻接矩阵
void BFS(GraphMtx *g, ElemType vertex) {printf("%c->", vertex);int v = getPosVertex(g, vertex);visit[v] = 1;int Q[MAX_VERTEX_SIZE];int front = 0, rear = 0;// 入队Q[rear++] = v;while (front != rear) { // 队列不空v = Q[front++]; // 出队并保存顶点int w = getFirstNeighbor(g, g->vList[v]);while (w != -1) {if (!visit[w]) {printf("%c->", g->vList[w]);visit[w] = 1;Q[rear++] = w;}w = getNextNeighbor(g, g->vList[v], g->vList[w]);}}
}
邻接表
void BFS(GraphLnk *g, ElemType vertex) {printf("%c->", vertex);int v = getPosVertex(g, vertex);visit[v] = 1;int Q[MAX_VERTEX_SIZE];int front = 0, rear = 0;// 入队Q[rear++] = v;while (front != rear) { // 队列不空v = Q[front++]; // 出队并保存顶点int w = getFirstNeighbor(g, g->nodeTable[v].data);while (w != -1) {if (!visit[w]) {printf("%c->", g->nodeTable[w].data);visit[w] = 1;Q[rear++] = w;}w = getNextNeighbor(g, g->nodeTable[v].data, g->nodeTable[w].data);}}
}

图的应用

BFS算法求解单源最短路径问题

  1. 初始化

    • 设置所有顶点的最短路径长度为无穷大,起始顶点的距离为0。
    • 标记起始顶点为已访问。
    • 将起始顶点加入队列。
  2. BFS遍历:当队列非空时,执行以下操作。

    • 从队列中取出一个顶点。
    • 遍历该顶点的所有未访问邻接顶点。
    • 更新邻接顶点的最短路径长度。
    • 标记邻接顶点为已访问。
    • 将邻接顶点加入队列。
  3. 完成遍历

    • 重复步骤2,直到队列为空。
    • 此时,数组d中存储的即为从起始顶点到所有可达顶点的最短路径长度。
void BFS_MIN_Distance(GraphMtx G, int u) {// d[i]表示从u到i结点的最短路径长度int d[MAX_VERTEX_SIZE]; int visited[MAX_VERTEX_SIZE]; // 访问标记数组Queue Q; // 定义队列Qfor (int i = 0; i < G.numV; ++i) {d[i] =; // 初始化路径长度为无穷大visited[i] = FALSE; // 初始化所有顶点为未访问}d[u] = 0; // 起始顶点到自身的距离为0visited[u] = TRUE; // 标记起始顶点为已访问EnQueue(Q, u); // 将起始顶点入队while (!IsEmpty(Q)) { // BFS算法主过程int v;DeQueue(Q, v); // 队头元素v出队for (int w = FirstNeighbor(G, v); w >= 0; w = NextNeighbor(G, v, w)) {if (!visited[w]) { // w为v的尚未访问的邻接顶点visited[w] = TRUE; // 标记为已访问d[w] = d[v] + G.edge[v][w]; // 路径长度加v到w的边的权重EnQueue(Q, w); // 顶点w入队}}}
}

拓扑排序

  • 使用栈实现图的拓扑排序,输出顶点的拓扑序列。
void topSort(GraphMtx *g) {// 统计每一个顶点的入度for (int j = 0; j < g->numV; ++j) {for (int i = 0; i < g->numV; ++i) {if (g->edge[i][j] == 1)inDegree[j]++;}}// 定义一个栈ElemType stack[MAX_VERTEX_SIZE] = { 0 };int top = 0;// 把入度为0的顶点入栈for (int i = 0; i < g->numV; ++i) {if (inDegree[i] == 0) // 入度为0stack[top++] = i;}for (int i = 0; i < g->numV; ++i) { // 排序输出每一个顶点if (top == 0) {printf("图有回路.\n");return;}int v = stack[--top];printf("%c->", g->vList[v]);int w = getFirstNeighbor(g, g->vList[v]);while (w != -1) {if (--inDegree[w] == 0)stack[top++] = w;w = getNextNeighbor(g, g->vList[v], g->vList[w]);}}
}

六、参考资料

鲍鱼科技课件

b站免费王道课后题讲解: link
在这里插入图片描述

网课全程班: link
在这里插入图片描述

26王道考研书

http://www.dtcms.com/wzjs/152166.html

相关文章:

  • 目前流行的网站分辨率做多大2023年第三波疫情9月
  • 国办加强政府网站建设的意见淘宝热搜关键词排行榜
  • 网站建设多少时间上海app定制开发公司
  • 手机网站 日期选择网络营销策划方案书范文
  • 在哪里查公司名字有没有注册专业seo培训学校
  • 最新被百度收录的网站有哪些可以免费推广的平台
  • 成都最新疫情情况关于进一步优化
  • appstore美区免费seo排名的职位
  • 网站正在建设中视频新产品推广方案范文
  • 做网站难不难外贸网站seo推广教程
  • 导购网站如何做免费推广seo自媒体培训
  • 博网站建设今天重大国际新闻
  • 营销型网站建设哪家公司好免费域名解析网站
  • 国内优秀网站武汉网络广告推广服务
  • 企业网站phpcms风云榜百度
  • 网站做支付按流量付费网络营销课程培训
  • 网络设计工作好找吗小红书关键词优化
  • 怎么在微信上做公众号百度seo关键词排名优化软件
  • 做ui要上那些网站semicircle
  • 邯郸做网站推广费用国家市场监督管理总局
  • 互联网广告推广公司优化工具箱
  • 遵义网站开发的公司如何做网络销售产品
  • u盘做网站全媒体广告投放平台
  • 伪原创php网站镜像同步程序关键词优化计划
  • 怎么做外贸网站优化百度公司介绍
  • 北京市建设工程信息网站免费的外贸b2b网站
  • 重庆设计网站刚开的店铺怎么做推广
  • 关于门户网站建设讲话温州网站优化推广方案
  • 东莞高埗疫情最新动态宁波企业seo服务
  • 快速做彩平图得网站seo中国