当前位置: 首页 > wzjs >正文

做一个web网站百度指数搜索热度大学

做一个web网站,百度指数搜索热度大学,做网站怎么赚钱 做网站怎么赚钱,山西省吕梁市属于哪个市🚀 力扣热题 347:前 K 个高频元素(详细解析) 📌 题目描述 力扣 347. 前 K 个高频元素 给你一个整数数组 nums 和一个整数 k,请你返回其中出现频率 前 k 高的元素。你可以按 任意顺序 返回答案。 &#x1f…

🚀 力扣热题 347:前 K 个高频元素(详细解析)

📌 题目描述

力扣 347. 前 K 个高频元素

给你一个整数数组 nums 和一个整数 k,请你返回其中出现频率 k 高的元素。你可以按 任意顺序 返回答案。

🎯 示例 1:

输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]

🎯 示例 2:

输入: nums = [1], k = 1
输出: [1]

💡 解题思路

本题考察 高频元素统计,涉及 哈希表堆(优先队列) 的应用。我们可以采用以下方法解决:

✅ 方法 1:哈希表 + 小顶堆(推荐,适用于大数据)

思路:

  1. 使用哈希表 统计每个元素的出现次数。
  2. 使用小顶堆(优先队列) 维护前 k 个高频元素,堆的大小保持在 k
  3. 遍历哈希表,将元素插入小顶堆:
    • 如果堆的大小小于 k,直接插入。
    • 如果堆的大小等于 k,比较新元素与堆顶元素的频率,若更大则替换堆顶。

⏳ 时间复杂度分析:

  • 统计频率:O(n)
  • 堆操作:O(n log k)
  • 最终取出 k 个元素:O(k log k)
  • 总复杂度:O(n log k),适用于大规模数据。

💻 Go 实现(小顶堆)

import ("container/heap"
)type Pair struct {num  intfreq int
}type MinHeap []Pairfunc (h MinHeap) Len() int            { return len(h) }
func (h MinHeap) Less(i, j int) bool  { return h[i].freq < h[j].freq } // 小顶堆
func (h MinHeap) Swap(i, j int)       { h[i], h[j] = h[j], h[i] }
func (h *MinHeap) Push(x interface{}) { *h = append(*h, x.(Pair)) }
func (h *MinHeap) Pop() interface{} {old := *hn := len(old)item := old[n-1]*h = old[:n-1]return item
}func topKFrequent(nums []int, k int) []int {freqMap := make(map[int]int)for _, num := range nums {freqMap[num]++}h := &MinHeap{}heap.Init(h)for num, freq := range freqMap {heap.Push(h, Pair{num, freq})if h.Len() > k {heap.Pop(h) // 保持堆大小为 k}}result := make([]int, k)for i := 0; i < k; i++ {result[i] = heap.Pop(h).(Pair).num}return result
}

✅ 方法 2:哈希表 + 快排(适用于小规模数据)

思路:

  1. 哈希表统计频率:O(n)
  2. 转化为切片后按频率排序:O(n log n)
  3. 取前 k 个元素:O(k)

⏳ 时间复杂度分析:

  • 总复杂度:O(n log n)
  • 适用于数据量较小的场景

💻 Go 实现(快速排序)

import "sort"func topKFrequentQuickSort(nums []int, k int) []int {freqMap := make(map[int]int)for _, num := range nums {freqMap[num]++}freqArr := make([][2]int, 0, len(freqMap))for num, freq := range freqMap {freqArr = append(freqArr, [2]int{num, freq})}sort.Slice(freqArr, func(i, j int) bool {return freqArr[i][1] > freqArr[j][1]})result := make([]int, k)for i := 0; i < k; i++ {result[i] = freqArr[i][0]}return result
}

是的,可以补充 桶排序(Bucket Sort) 作为另一种解法。桶排序适用于 元素范围较小 的情况,能够在 O(n) 线性时间内找到前 K 个高频元素。


方法 3:桶排序(Bucket Sort)

💡 思路

  1. 哈希表统计频率:用 map[int]int 统计每个元素的出现次数。
  2. 构建桶数组:创建 buckets 数组,其中索引代表元素的频率,索引值存储对应的数字。
  3. 从高频向低频遍历桶,找到前 K 个元素。

时间复杂度分析

操作复杂度
统计频率O(n)
分配到桶O(n)
遍历桶O(n)
总复杂度O(n)

💻 Go 代码实现

func topKFrequentBucketSort(nums []int, k int) []int {freqMap := make(map[int]int)for _, num := range nums {freqMap[num]++}// 创建桶,索引代表频率,存储出现该频率的数n := len(nums)buckets := make([][]int, n+1) for num, freq := range freqMap {buckets[freq] = append(buckets[freq], num)}// 逆序遍历桶,找到前 K 个高频元素result := []int{}for i := n; i > 0 && len(result) < k; i-- {if len(buckets[i]) > 0 {result = append(result, buckets[i]...)}}return result[:k] // 只返回前 k 个元素
}

🔥 方法对比总结

方法时间复杂度适用场景备注
哈希表 + 小顶堆O(n log k)n 很大,k 很小适用于 大规模数据
哈希表 + 快速排序O(n log n)n 较小,适用于静态数据代码较简洁
哈希表 + 桶排序O(n)n 适中,元素范围小适用于 频率较分散的情况

🎯 总结

  • 堆排序 适用于 大数据流处理,时间复杂度 O(n log k),使用 优先队列(最小堆)
  • 快速排序 适用于 静态数据排序,时间复杂度 O(n log n),代码较简洁。
  • 桶排序 适用于 元素范围小且频率分散 的情况,时间复杂度 O(n),是 最快的方法 之一。

💡 如果觉得这篇文章对你有帮助,欢迎点赞 👍、收藏 ⭐、关注 💻,持续分享更多高质量算法题解析!🎯🚀📌

http://www.dtcms.com/wzjs/140694.html

相关文章:

  • 网站建设市场趋势网站推广哪个平台最好
  • 行业网站设计开发费用东莞做网站的公司有哪些
  • 下列哪个网站不属于sns(社交网络)免费开发软件制作平台
  • 网站建设基础实验1dy刷粉网站推广马上刷
  • 现在石家庄做网站的公司有哪几家广州seo学徒
  • 网站首页标题怎么写电商代运营公司100强
  • 深圳福永网站建设公司数字营销服务商seo
  • 做的网站很卡ds2600ii色带
  • 鲜花店网站建设的总结百度站长平台网站收录
  • 企业做自己的网站要注意什么信息流广告推广
  • 营销方案网站关键词采集网站
  • 龙岗平湖网站开发线上宣传推广方案
  • 买邮箱的网站推广文案怎么写
  • 高品质的网站开发公司贵阳百度快照优化排名
  • 网站后台ftp账户百度网页游戏
  • 网站备份挖掘怎么把自己的网站发布到网上
  • wordpress难不难seo 深圳
  • 做设计网站网上销售有哪些方法
  • 免费建站系统软件广州seo顾问seocnm
  • 网站推广常用方法包括2024年阳性最新症状
  • 网站logo更换大数据获客系统
  • b2c网站开发百度热门
  • 东台网站建设seo软件视频教程
  • 网站常用字号搜索引擎营销seo
  • 360未经证实的网站如何做关键词优化如何做
  • 网站快速备案靠谱吗滨州网站seo
  • 做网站可以用什么软件nba最新交易一览表
  • 网站设计规划范文百度关键词查询网站
  • 网站怎么做支付宝支付接口搜一搜
  • 广告设计用到的软件宁波seo网络推广产品服务