当前位置: 首页 > wzjs >正文

缙云做网站专业培训seo的机构

缙云做网站,专业培训seo的机构,html wordpress,网站标题能改吗一、要求 利用给定的中英文语料,分别计算英语字母、英语单词、汉字、汉语词的熵,并和已公开结果比较,思考汉语的熵对汉语编码和处理的影响。 二、实验内容 2.1 统计英文语料的熵 1.代码 (1)计算英文字母的熵 import math #计算每个英文…

一、要求

利用给定的中英文语料,分别计算英语字母、英语单词、汉字、汉语词的熵,并和已公开结果比较,思考汉语的熵对汉语编码和处理的影响。

二、实验内容

2.1 统计英文语料的熵

1.代码

(1)计算英文字母的熵

import math
#计算每个英文字母的熵
def calculate_letter_entropy(file_path):letter_count={}with open(file_path,'r',encoding='utf-8')as file:for line in file:for char in line:if char.isalpha():char=char.lower()if 'a' <= char <= 'z': letter_count[char]=letter_count.get(char,0)+1total_count=sum(letter_count.values())letter_prob={k:v/total_count for k,v in letter_count.items()}letter_entropy={}for letter,prob in letter_prob.items():letter_entropy[letter]=-prob*math.log2(prob)overall_entropy=-sum([prob*math.log2(prob)for prob in letter_prob.values()])return letter_entropy,overall_entropy
file_path='D:\[NLP]test work\实验语料库25\实验2、3\eng.txt'
letter_entropy,overall_entropy1=calculate_letter_entropy(file_path)
word_entropy,overall_entropy2=calculate_word_entropy(file_path)
print("每个英文字母的熵:")
for letter,entropy_value in letter_entropy.items():print(f"{letter}:{entropy_value}")
print("统计英文字母整体的熵:",{overall_entropy1})

(2)计算英文单词的熵

import math
def calculate_word_entropy(file_path):word_count={}with open(file_path,'r',encoding='utf-8')as file:for line in file:words=line.strip().split()for word in words:word=word.lower()word_count[word]=word_count.get(word,0)+1total_count=sum(word_count.values())word_prob={k:v/total_count for k,v in word_count.items()}word_entropy={}for word,prob in word_prob.items():word_entropy[word]=-prob*math.log2(prob)overall_entropy=-sum([prob*math.log2(prob)for prob in word_prob.values()])return word_entropy,overall_entropy
file_path='D:\[NLP]test work\实验语料库25\实验2、3\eng.txt'
letter_entropy,overall_entropy1=calculate_letter_entropy(file_path)
word_entropy,overall_entropy2=calculate_word_entropy(file_path)
print("每个英文单词的熵:")
for word,entropy_value in word_entropy.items():print(f"{word}:{entropy_value}")
print("统计英文单词整体的熵:",{overall_entropy2})

 

2.结果展示及分析

(1)计算英语字母的熵结果如下图所示,根据相关资料显示,英语字母的熵约为4.03比特,实验中得到的熵约为4.16比特。

(2)计算英语单词的熵结果如下图所示,根据相关资料显示,英语词的熵约为10比特,这里实验得到的英语单词的熵约为9.96比特。

 

2.2 统计中文语料的熵

1.代码

(1)计算汉字的熵

import math
from collections import Counter
def calculate_char_entropy(file_path):char_count=Counter()with open(file_path,'r',encoding='gb2312',errors='ignore')as file:for line in file:chinese_chars=[char for char in line if '\u4e00'<=char<='\u9fff']char_count.update(chinese_chars)total_count=sum(char_count.values())char_prob={char:count/total_count for char,count in char_count.items()}#每个汉字熵char_entropy={char:-prob*math.log2(prob)for char ,prob in char_prob.items()}#整体汉字熵overall_entropy=-sum([prob*math.log2(prob)for prob in char_prob.values()])return char_entropy,overall_entropy
file_path='D:\[NLP]test work\实验语料库25\实验2、3\chn.txt'
char_entropy,overall_entropy1=calculate_char_entropy(file_path)
print("每个汉字的熵:")
for char,entropy_value in char_entropy.items():print(f"{char}:{entropy_value}")
print("统计汉字整体的熵:",{overall_entropy1})

(2)计算汉语词的熵

import math
from collections import Counter
def calculate_word_entropy(file_path):word_count=Counter()total_word_count=0with open(file_path,'r',encoding='gb2312',errors='ignore')as file:text=file.read()words=text.split()word_count.update(words)total_word_count=len(words)word_prob={word:count/total_word_count for word,count in word_count.items()}word_entropy={word:-prob*math.log2(prob) for word,prob in word_prob.items()}overall_entropy =sum(word_entropy.values())return word_entropy,overall_entropy
file_path='D:\[NLP]test work\实验语料库25\实验2、3\chn.txt'
word_entropy,overall_entropy=calculate_word_entropy(file_path)
for word,entropy_value in word_entropy.items():print(f"{word}:{entropy_value}")
print(f"整体汉语词的熵:{overall_entropy}")

2.实验结果展示及分析

(1)计算汉字的熵结果如下图所示,根据资料显示,汉字的信息熵为9.71比特,这里实验得到的汉字的熵约为9.50比特。

(2)计算汉语词的熵结果如下图所示,资料显示汉语词的熵约为11.46比特,汉语词汇平均长度约为2.5个汉字,这里实验得到的汉语词的熵约为10.77比特。

三、总结

  信息熵能反映语料库中词汇等的复杂程度,熵越高,代表复杂程度越高,即语言结构和表达更多样。根据实验结果对比可以发现,汉语的熵相对比英语的熵高,其原因可能是汉语的词汇更丰富、用法更灵活,而且汉语的词序变化、词汇的使用可能带来丰富的语义变化,而英语的语法结构较为严谨,在表达相同的内容时,表达方式可能比较少。 

http://www.dtcms.com/wzjs/138811.html

相关文章:

  • 搭理彩票网站开发廊坊关键词优化排名
  • wordpress会员无法注册化工网站关键词优化
  • 阿里云空间部署网站吗衡阳seo优化首选
  • 佛山做外贸网站如何广东疫情防控措施
  • 网站配色设计谷歌seo搜索
  • 建设网站哪专业青岛网络优化费用
  • 电子名片制作app武汉整站优化
  • 稳定的网站建设seo快速培训
  • wap网站模式百度网站免费优化软件下载
  • 如何做简易的网站下载百度语音导航地图安装
  • 涪陵网站设计百度搜图
  • 制作个人网站的要求网站优化排名公司
  • 免费建立企业网站长春seo整站优化
  • 建站系统的应用场景百度网盘链接
  • 58同城网站建设思路seo是什么职位缩写
  • wechat网页版登录网站的优化策略方案
  • 模板网站源码搜索引擎优化方法
  • pc蛋蛋网站怎么做google seo怎么做
  • 怎样制作企业的网站百度提交入口网址是指在哪里
  • 做网站要需要多少钱百度图片搜索引擎
  • 新浪军事 手机新浪网长沙关键词优化新报价
  • 怎样做婚庆网站seo深度解析
  • 郑州网站建设中国建设建设银行百度如何发布作品
  • 企业网站策划案怎么写做电商需要学哪些基础
  • 国内建设网站百度客服在线咨询电话
  • 越秀企业网站建设跟我学seo从入门到精通
  • 长沙软件开发北京官网seo收费
  • 网站建设如何去找客户综合查询
  • 深圳最新疫情最新消息实时更新轨迹一键优化表格
  • 做安卓icon图标下载网站专注网站建设服务机构