当前位置: 首页 > wzjs >正文

wordpress当前在线西安seo专员

wordpress当前在线,西安seo专员,一天挣5000元的偏门路子,上传wordpress后网页为什么空白文章目录 三、矩阵的QR分解3.1、Givens矩阵与Givens变换3.2、Householder矩阵与Householder变换3.3、QR分解 书接上文矩阵分解相关知识点总结(一) 三、矩阵的QR分解 3.1、Givens矩阵与Givens变换 设非零列向量 x ∈ R n \bm{x}\in {\bf{R}}^n x∈Rn及单…

文章目录

    • 三、矩阵的QR分解
        • 3.1、Givens矩阵与Givens变换
        • 3.2、Householder矩阵与Householder变换
        • 3.3、QR分解

书接上文矩阵分解相关知识点总结(一)

三、矩阵的QR分解

3.1、Givens矩阵与Givens变换

  设非零列向量 x ∈ R n \bm{x}\in {\bf{R}}^n xRn及单位列向量 z ∈ R n \bm{z}\in {\bf{R}}^n zRn,存在有限个Givens矩阵的乘积,记作 T \bm{T} T,使得
T x = ∣ x ∣ z (3) \color{#F00}\bm{T}\bm{x}=|\bm{x}|\bm{z}\tag{3} Tx=xz(3)

上式即为Givens变换,也称初等旋转变换,其中Givens矩阵,也称初等旋转矩阵,记作 T i j = T i j ( c , s ) = [ I c s I − s c I ] \color{#F0F}\bm{T}_{ij}=\bm{T}_{ij}(c,s)=\begin{bmatrix} \bm{I} \\[1ex] & c & & s & \\[1.2ex] & & \bm{I} \\[1.2ex] & -s& & c \\[1.2ex] & & & & \bm{I} \end{bmatrix} Tij=Tij(c,s)= IcsIscI T = T 1 n T 1 , n − 1 ⋯ T 13 T 12 \bm{T}=\bm{T}_{1n}\bm{T}_{1,n-1}\cdots \bm{T}_{13}\bm{T}_{12} T=T1nT1,n1T13T12

  对于非零列向量 x = ( ξ 1 , ξ 2 , ⋯ , ξ n ) T \bm{x}=(\xi_1,\xi_2,\cdots,\xi_n)^{\rm T} x=(ξ1,ξ2,,ξn)T,及单位列向量 z = e 1 = ( 1 , 0 , ⋯ , 0 ) T \bm{z}=\bm{e}_1=(1,0,\cdots,0)^{\rm T} z=e1=(1,0,,0)T,其Givens变换过程如下:

  • 首先对 x \bm{x} x构造Givens矩阵 T 12 ( c , s ) = [ c s − s c I ] \bm{T}_{12}(c,s)=\begin{bmatrix} c&s \\-s & c\\ & & \bm{I} \end{bmatrix} T12(c,s)= csscI ,其中 c = ξ 1 ξ 1 2 + ξ 2 2 , s = ξ 2 ξ 1 2 + ξ 2 2 c=\cfrac{\xi_1}{\sqrt{\xi_1^2+\xi_2^2}}\,,\,s=\cfrac{\xi_2}{\sqrt{\xi_1^2+\xi_2^2}} c=ξ12+ξ22 ξ1,s=ξ12+ξ22 ξ2,有
    T 12 x = ( ξ 1 2 + ξ 2 2 , 0 , ξ 3 , ⋯ , ξ n ) T \bm{T}_{12}\bm{x}=(\sqrt{\xi_1^2+\xi_2^2},0,\xi_3,\cdots,\xi_n)^{\rm T} T12x=(ξ12+ξ22 ,0,ξ3,,ξn)T

  • 再对 T 12 x \bm{T}_{12}\bm{x} T12x构造Givens矩阵 T 13 ( c , s ) = [ c s 1 − s c I ] \bm{T}_{13}(c,s)=\begin{bmatrix} c& &s \\ &1& \\-s & & c\\ & & & \bm{I} \end{bmatrix} T13(c,s)= cs1scI ,其中 c = ξ 1 2 + ξ 2 2 ξ 1 2 + ξ 2 2 + ξ 3 2 , s = ξ 3 ξ 1 2 + ξ 2 2 + ξ 3 2 c=\cfrac{\sqrt{\xi_1^2+\xi_2^2}}{\sqrt{\xi_1^2+\xi_2^2+\xi_3^2}}\,,\,s=\cfrac{\xi_3}{\sqrt{\xi_1^2+\xi_2^2+\xi_3^2}} c=ξ12+ξ22+ξ32 ξ12+ξ22 ,s=ξ12+ξ22+ξ32 ξ3,有
    T 13 ( T 12 x ) = ( ξ 1 2 + ξ 2 2 + ξ 3 2 , 0 , 0 , ξ 4 , ⋯ , ξ n ) T \bm{T}_{13}(\bm{T}_{12}\bm{x})=(\sqrt{\xi_1^2+\xi_2^2+\xi_3^2},0,0,\xi_4,\cdots,\xi_n)^{\rm T} T13(T12x)=(ξ12+ξ22+ξ32 ,0,0,ξ4,,ξn)T

  • 如此下去,最后对 T 1 , n − 1 T 1 , n − 2 ⋯ T 13 T 12 x \bm{T}_{1,n-1}\bm{T}_{1,n-2}\cdots \bm{T}_{13}\bm{T}_{12}\bm{x} T1,n1T1,n2T13T12x构造Givens矩阵 T 1 n ( c , s ) = [ c s I − s c ] \bm{T}_{1n}(c,s)=\begin{bmatrix} c& &s \\ & \bm{I}& \\-s & & c \end{bmatrix} T1n(c,s)= csIsc ,其中 c = ξ 1 2 + ⋯ + ξ n − 1 2 ξ 1 2 + ξ 2 2 + ⋯ + ξ n − 1 2 + ξ n 2 , s = ξ n ξ 1 2 + ξ 2 2 + ⋯ + ξ n − 1 2 + ξ n 2 \color{#F0F}c=\cfrac{\sqrt{\xi_1^2+\cdots+\xi_{n-1}^2}}{\sqrt{\xi_1^2+\xi_2^2+\cdots+\xi_{n-1}^2+\xi_{n}^2}}\,,\,s=\cfrac{\xi_n}{\sqrt{\xi_1^2+\xi_2^2+\cdots+\xi_{n-1}^2+\xi_{n}^2}} c=ξ12+ξ22++ξn12+ξn2 ξ12++ξn12 ,s=ξ12+ξ22++ξn12+ξn2 ξn,有
    T 1 n ( T 1 , n − 1 ⋯ T 12 x ) = ( ξ 1 2 + ξ 2 2 + ⋯ + ξ n − 1 2 + ξ n 2 , 0 , ⋯ , 0 ) T \bm{T}_{1n}(\bm{T}_{1,n-1}\cdots \bm{T}_{12}\bm{x})=(\sqrt{\xi_1^2+\xi_2^2+\cdots+\xi_{n-1}^2+\xi_{n}^2},0,\cdots,0)^{\rm T} T1n(T1,n1T12x)=(ξ12+ξ22++ξn12+ξn2 ,0,,0)T

T = T 1 n T 1 , n − 1 ⋯ T 12 \bm{T}=\bm{T}_{1n}\bm{T}_{1,n-1}\cdots \bm{T}_{12} T=T1nT1,n1T12,有 T x = ∣ x ∣ z = ∣ x ∣ e 1 \bm{T}\bm{x}=|\bm{x}|\bm{z}=|\bm{x}|\bm{e}_1 Tx=xz=xe1,即通过有限个Givens矩阵 T \bm{T}\, T x \bm{x}\, x变换为与 z \bm{z}\, z同方向的向量。

3.2、Householder矩阵与Householder变换

  任意给定非零列向量 x ∈ R n ( n > 1 ) \bm{x}\in {\bf{R}}^n\;(n>1) xRn(n>1)及单位列向量 z ∈ R n \bm{z}\in {\bf{R}}^n zRn,则存在矩阵 H \bm{H} H,使得
H x = ∣ x ∣ z (4) \color{#F00}\bm{H}\bm{x}=|\bm{x}|\bm{z}\tag{4} Hx=xz(4)

上式即为Householder变换,也称初等反射变换,其中 H = I − 2 u u T \color{#F0F}\bm{H}=\bm{I}-2\bm{uu}^{\rm T} H=I2uuT,为Householder矩阵,也称初等反射矩阵

  对于非零列向量 x = ( ξ 1 , ξ 2 , ⋯ , ξ n − 1 , ξ n ) T \bm{x}=(\xi_1,\xi_2,\cdots,\xi_{n-1},\xi_n)^{\rm T} x=(ξ1,ξ2,,ξn1,ξn)T及单位列向量 z = e 1 = ( 1 , 0 , ⋯ , 0 ) T \bm{z}=\textbf{\textit{e}}_1=(1,0,\cdots,0)^{\rm T} z=e1=(1,0,,0)T,其Householder变换过程如下:

  取 u = x − ∣ x ∣ z ∣ x − ∣ x ∣ z ∣ = x − ∣ x ∣ e 1 ∣ x − ∣ x ∣ e 1 ∣ \color{#F0F}\bm{u}=\cfrac{\bm{x}-|\bm{x}|\bm{z}}{|\bm{x}-|\bm{x}|\bm{z}|}=\cfrac{\bm{x}-|\bm{x}|\bm{e}_1}{|\bm{x}-|\bm{x}|\bm{e}_1|} u=xxzxxz=xxe1xxe1,其中 ∣ x ∣ = ξ 1 2 + ξ 2 2 + ⋯ + ξ n − 1 2 + ξ n 2 |\bm{x}|=\sqrt{\xi_1^2+\xi_2^2+\cdots+\xi_{n-1}^2+\xi_{n}^2} x=ξ12+ξ22++ξn12+ξn2 ,则 H = I − 2 u u T \bm{H}=\bm{I}-2\bm{uu}^{\rm T} H=I2uuT H x = ∣ x ∣ z = ∣ x ∣ e 1 \bm{Hx}=|\bm{x}|\bm{z}=|\bm{x}|\bm{e}_1 Hx=xz=xe1,即通过Householder矩阵 H \bm{H}\, H x \bm{x}\, x变换为与 z \bm{z}\, z同方向的向量。

Givens矩阵 T i j \textbf{\textit{T}}_{ij}\, Tij具有如下性质Householder矩阵 H \textbf{\textit{H}}\, H具有如下性质
(1) T i j = − T i j T = − T i j − 1 \bm{T}_{ij}=-\bm{T}_{ij}^{\rm T}=-\bm{T}_{ij}^{-1} Tij=TijT=Tij1 H = H T = H − 1 \bm{H}=\bm{H}^{\rm T}=\bm{H}^{-1} H=HT=H1
(2) T i j 2 = − T i j T T i j = − T i j − 1 T i j = − I \bm{T}_{ij}^{2}=-\bm{T}_{ij}^{\rm T}\bm{T}_{ij}=-\bm{T}_{ij}^{-1}\bm{T}_{ij}=-\bm{I} Tij2=TijTTij=Tij1Tij=I H 2 = H T H = H − 1 H = I \bm{H}^2=\bm{H}^{\rm T}\bm{H}=\bm{H}^{-1}\bm{H}=\bm{I} H2=HTH=H1H=I
(3) d e t T i j = 1 \rm{det}\bm{T}_{ij}=1 detTij=1 d e t H = − 1 \rm{det}\bm{H}=-1 detH=1

初等旋转矩阵是两个初等反射矩阵的乘积,即有 T i j = H v H u (5) \color{#F00}初等旋转矩阵是两个初等反射矩阵的乘积,即有\bm{T}_{ij}=\bm{H}_v\bm{H}_u\tag{5} 初等旋转矩阵是两个初等反射矩阵的乘积,即有Tij=HvHu(5)

3.3、QR分解

  设 A A A m × n m\times n m×n实(复)矩阵,且其 n n n个列线性无关,则 A A A有分解
A = Q R (6) \color{#F00}A=QR\tag{6} A=QR(6)

其中 Q Q Q m × n m\times n m×n实(复)矩阵,且满足 Q T Q = I Q^{\text T}Q=I QTQ=I Q H Q = I Q^{\text H}Q=I QHQ=I), R R R n n n阶实(复)可逆上三角矩阵。上式即为矩阵的QR分解,也称正交三角分解,该分解除去相差一个对角元素的绝对值(模)全等于1的对角矩阵因子外是唯一的。

  对于任意的 n n n阶实可逆矩阵 A = ( a i j ) n × n A=(a_{ij})_{n \times n} A=(aij)n×n,均可通过左连乘Givens矩阵(初等旋转矩阵)或左连乘Householder矩阵(初等反射矩阵),将其化为可逆上三角矩阵。

http://www.dtcms.com/wzjs/126165.html

相关文章:

  • 大型b2b网站有哪些百度seo是什么意思呢
  • 网站建设中的端口会计培训机构
  • 如何创建自己的卡网北京网站优化平台
  • 可以在几个 网站备案网站关键词如何快速上首页
  • 建网站的设备在哪里找软件开发公司
  • 佛山网站建设 合优网上如何做广告
  • 兼职做ppt是哪个网站好百度免费收录提交入口
  • 做网站用虚拟主机好不好百度推广怎么收费的
  • 昆明网站排名优化上海十大公关公司排名
  • 做篮球网站用的背景图片网站seo怎么做
  • 个人如何做网站google商店
  • 做商城网站设计html期末大作业个人网站制作
  • 哪个b2b网站做固定排名好域名解析网站
  • 如何用用dw做网站后台浏览器网页版入口
  • 免费公网网站建设盐城seo优化
  • 如何组做网站磁力猫最佳搜索引擎入口
  • 台州智能模板建站深圳网络营销网站设计
  • 怎么做网站底部版权信息滕州seo
  • 云县网站建设百度ai助手入口
  • 全响应式网站用什么做的seo的范畴是什么
  • wordpress菜单分级网站优化策略
  • html5和ria网站设计关键词排名怎么快速上去
  • 素材网站怎么做建立一个网站需要多少钱
  • 装饰工程包括哪些主要内容seo技术员
  • 海口cms建站系统永久免费进销存管理软件手机版
  • 工程建设信息网站外贸建站优化
  • 南京企业网站开发合肥百度seo代理
  • 做网站流量点击分析的软件百度官网网站登录
  • 做商城购物网站网络推广的优势
  • seo推广品牌排行榜厦门seo排名优化