当前位置: 首页 > wzjs >正文

济南网站建设企业汕头网站建设方案维护

济南网站建设企业,汕头网站建设方案维护,根据描述生成图片的网站,苏州行业网站建设轮廓与轮廓特征前言1.获取轮廓通过膨胀与腐蚀获得轮廓通过梯度获取轮廓通过边缘检测获取轮廓2.寻找轮廓参数及作用对比3.轮廓特征前言 在前面的文章中我们已经学会了使用膨胀与腐蚀、使用梯度、使用边缘检测的方式获得图像的轮廓,那么在获得轮廓后我们可以对图像进…

轮廓与轮廓特征

  • 前言
  • 1.获取轮廓
    • 通过膨胀与腐蚀获得轮廓
    • 通过梯度获取轮廓
    • 通过边缘检测获取轮廓
  • 2.寻找轮廓
    • 参数及作用对比
  • 3.轮廓特征


前言

在前面的文章中我们已经学会了使用膨胀与腐蚀、使用梯度、使用边缘检测的方式获得图像的轮廓,那么在获得轮廓后我们可以对图像进行什么样的操作呢?本文将介绍轮廓的绘制与轮廓特征的使用

1.获取轮廓

假设我们现在有这样一张名为feng.jpg的图片
在这里插入图片描述

同样为了表述方便,我们要先定义一个图像显示函数

def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()

通过膨胀与腐蚀获得轮廓

在之前的博客:opencv-python常用函数解析及参数介绍(五)——腐蚀与膨胀中我们学到了三种获取轮廓的方式,大家可以查阅之前的博客获取细节,在本文中我们将使用膨胀减去腐蚀获取轮廓

img = cv2.imread('feng.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 230, 255, cv2.THRESH_BINARY)
kernel = np.ones((5,5),np.uint8) 
dilate = cv2.dilate(thresh, kernel, 1)
erosion = cv2.erode(thresh, kernel, 1)
contour_img = dilate-erosion # 获取轮廓
cv_show(contour_img, 'c')

在这里插入图片描述

通过梯度获取轮廓

本文使用效果最好的Sobel算子获取轮廓,其他的梯度计算方式请参考:opencv-python常用函数解析及参数介绍(六)——图像梯度

img = cv2.imread('feng.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 230, 255, cv2.THRESH_BINARY)# 获取轮廓
contour_x = cv2.Sobel(thresh, cv2.CV_64F, 1, 0, ksize=3) 
contour_x = cv2.convertScaleAbs(contour_x)
contour_y = cv2.Sobel(thresh, cv2.CV_64F, 0, 1, ksize=3)
contour_y = cv2.convertScaleAbs(contour_y)
contour_img = cv2.addWeighted(contour_x, 0.5, contour_y, 0.5, 0)
cv_show(contour_img, 'c')

在这里插入图片描述

通过边缘检测获取轮廓

边缘检测的细节请参照:opencv-python常用函数解析及参数介绍(七)——边缘检测

img = cv2.imread('feng.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 230, 255, cv2.THRESH_BINARY)# 获取轮廓
contour_img = cv2.Canny(img, 200, 250)
cv_show(contour_img, 'c')

在这里插入图片描述

2.寻找轮廓

下面我们使用效果最好的边缘检测得到的结果寻找轮廓

我们留意到,这个符号由多个图形组成,我们可以使用cv2.findContours函数找到每一部分的轮廓
findContours的参数为(图像,mode, method)

其中mode为轮廓检索模式,参数和作用如下

参数作用
RETR_EXTERNAL只检索最外面的轮廓;
RETR_LIST检索所有的轮廓,并将其保存到一条链表当中;
RETR_CCOMP检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
RETR_TREE检索所有的轮廓,并重构嵌套轮廓的整个层次

其中method为轮廓逼近方法,参数和作用如下

参数作用
CHAIN_APPROX_NONE以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
CHAIN_APPROX_SIMPLE压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。

我们可以使用cv2.drawContours函数画出轮廓,其参数有(轮廓,轮廓索引,颜色模式,线条厚度)
轮廓索引是只第几个轮廓,当为-1时则画出所有轮廓,需要注意的是在绘制前需要先copy一份原图,否则原图也会被画上轮廓

参数及作用对比

这个过程只是为了方便展示效果,如果不理解不必强求

import mathfor retr in ["cv2.RETR_EXTERNAL", "cv2.RETR_LIST", "cv2.RETR_CCOMP", "cv2.RETR_TREE"]:print(retr)contours, hierarchy = cv2.findContours(contour_img, eval(retr), cv2.CHAIN_APPROX_NONE)r_list = imgrow = int(math.sqrt(len(contours) + 2))col = math.ceil((len(contours) + 2) / row)+1plt.subplot(row,col, 1)plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))plt.xticks([]), plt.yticks([])plt.title('origin')for i in range(len(contours)):res = cv2.drawContours(img.copy(), contours, i, (0, 0, 255), 2)plt.subplot(row, col, 2+i)plt.imshow(cv2.cvtColor(res, cv2.COLOR_BGR2RGB))plt.xticks([]), plt.yticks([])plt.title(str(i+1))plt.subplot(row, col, len(contours)+2)plt.imshow(cv2.cvtColor(cv2.drawContours(img.copy(), contours, -1, (0, 0, 255), 2), cv2.COLOR_BGR2RGB))plt.xticks([]), plt.yticks([])plt.title('all')plt.show()

在这里插入图片描述

可以看到除了第一个之外其他的效果相似,其实确实是这样的,其他的只不过是层次不一样,而第一个只取了外轮廓,所以看起来要比其他的轮廓少。
第二个参数只不过是存储方式不同,从描述上来看,一个适用于曲线较多的情况,另外一个适用于直线较多的情况。
同时我们还看到,这些图里面似乎有一些没什么变化的图,这是因为图中有噪点,所以有的点被误判成了轮廓,要去掉这种情况的点我们只需要求一下轮廓特征就好了,比如规定轮廓面积小于某个值就不算做轮廓或者周长小于某个值就不算做轮廓。

3.轮廓特征

在opencv中我们通过cv2.contourArea求面积,通过cv2.contourLength求周长,如果contoursLength第二个参数为True则求的周长为闭区间
我们来求一下第一个区间的面积和周长

contours, hierarchy=cv2.findContours(contour_img,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
res = cv2.drawContours(img.copy(), contours, 0, (0, 0, 255), 2)
cv_show(res,'res')
print(cv2.contourArea(contours[0]))
print(cv2.arcLength(contours[0], True))

在这里插入图片描述
在这里插入图片描述
下面看一下所有的面积和周长

contours, hierarchy=cv2.findContours(contour_img,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
for i in range(len(contours)):print(cv2.contourArea(contours[i]), cv2.arcLength(contours[i], True))

在这里插入图片描述
值为0的就是那些被误判成轮廓的点

http://www.dtcms.com/wzjs/124964.html

相关文章:

  • 企业网站有那些免费可用的网站源码
  • 怎么用php做网站后台程序怎样优化关键词到首页
  • 深圳网站建设ucreator淘宝seo排名优化
  • 怎么做网站百度贴吧搜索引擎优化员简历
  • c 做网站网络营销方案的制定
  • 响应式网站开发哪家好百度域名收录提交入口
  • 重庆在线开放平台seo网站推广批发
  • 那个网站做外贸好网站收录查询爱站
  • 怎么做同城商务网站网络运营师
  • 天津网站建设品牌推广网站搜索引擎优化方法
  • seo网站建设 厦门宁德市蕉城区
  • 领优惠券的网站是怎么做的厦门seo顾问
  • 哈尔滨网站优化对策seo网络推广教程
  • 海南网站开发网络营销事件
  • 中国做的比较好的网站设计公司有哪些长沙哪家网络公司做网站好
  • 台州网站建设百度网站推广费用
  • 企业百度网站怎么做网络广告策划流程有哪些?
  • 建设自己的网站首页google浏览器下载安装
  • 南宁网站关键字优化小熊代刷推广网站
  • 网站推广计划书包含哪些内容百度网盘首页
  • 怎么添加网站程序广州建网站的公司
  • 胶州家园网站建设网盟推广是什么意思
  • 陇南市建设局网站网络舆情监测
  • 美国服务器ip地址免费网站seo视频狼雨seo教程
  • 做网站包括图片设计吗谷歌google官网下载
  • 桐乡网站二次开发怎样建网站
  • 局域网内服务器做网站网络推广外包内容
  • 龙海市城乡规划建设局网站免费域名申请
  • 小程序商城模板免费在线刷seo
  • 网站制作方案书销售人员培训课程有哪些