当前位置: 首页 > wzjs >正文

红色网站 推荐10常用的网络营销方法

红色网站 推荐,10常用的网络营销方法,网站前台空白,网站开发实训步骤“最长连续序列”是一道极具代表性的数组处理问题, 本文将带你从直观思路出发,逐步推导出最优解法,并通过场景化记忆技巧掌握核心逻辑。 一、题目描述 题目:给定一个未排序的整数数组 nums,找出数字连续的最长序列&…

“最长连续序列”是一道极具代表性的数组处理问题, 本文将带你从直观思路出发,逐步推导出最优解法,并通过场景化记忆技巧掌握核心逻辑。

一、题目描述

题目:给定一个未排序的整数数组 nums,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。
要求:时间复杂度为 O(n)。

示例
输入:nums = [100, 4, 200, 1, 3, 2]
输出:4
解释:最长连续序列是 [1, 2, 3, 4],长度为 4

二、解法分析:从暴力到最优

方法一:暴力法(直观但超时)

思路

对每个数 x,检查 x+1, x+2, ... 是否存在于数组中,记录最长连续序列的长度。

代码
public int longestConsecutive(int[] nums) {int longestStreak = 0;for (int num : nums) {int currentNum = num;int currentStreak = 1;while (arrayContains(nums, currentNum + 1)) {currentNum += 1;currentStreak += 1;}longestStreak = Math.max(longestStreak, currentStreak);}return longestStreak;
}private boolean arrayContains(int[] arr, int num) {for (int i = 0; i < arr.length; i++) {if (arr[i] == num) {return true;}}return false;
}
复杂度
  • 时间复杂度:O(n³)
    • 遍历数组 O(n)
    • 对每个数检查后续 O(n)
    • 每次检查是否存在 O(n)
  • 空间复杂度:O(1)

方法二:排序法(O(n log n),不符合要求但易理解)

思路

先排序数组,再遍历统计连续序列长度。

代码
public int longestConsecutive(int[] nums) {if (nums.length == 0) return 0;Arrays.sort(nums);int longestStreak = 1;int currentStreak = 1;for (int i = 1; i < nums.length; i++) {if (nums[i] != nums[i-1]) {if (nums[i] == nums[i-1] + 1) {currentStreak++;} else {longestStreak = Math.max(longestStreak, currentStreak);currentStreak = 1;}}}return Math.max(longestStreak, currentStreak);
}
复杂度
  • 时间复杂度:O(n log n)(排序主导)
  • 空间复杂度:O(1)(忽略排序的栈空间)

方法三:哈希表优化(O(n),最优解)

思路
  1. 用哈希表存储所有数:快速判断某个数是否存在(O(1))。
  2. 仅从序列起点开始计数:若 x-1 不存在,则 x 是序列起点,开始向后计数。
代码
public int longestConsecutive(int[] nums) {// 用 HashSet 存储所有数,支持 O(1) 查询Set<Integer> numSet = new HashSet<>();for (int num : nums) {numSet.add(num);}int longestStreak = 0;// 遍历每个数,若它是序列起点,则向后计数for (int num : numSet) {// 若 num-1 不存在,则 num 是序列起点if (!numSet.contains(num - 1)) {int currentNum = num;int currentStreak = 1;// 持续检查 currentNum+1 是否存在while (numSet.contains(currentNum + 1)) {currentNum += 1;currentStreak += 1;}longestStreak = Math.max(longestStreak, currentStreak);}}return longestStreak;
}
复杂度
  • 时间复杂度:O(n)
    • 每个数最多被访问两次(一次插入哈希表,一次计数)
  • 空间复杂度:O(n)(哈希表存储所有数)

三、最优解法的核心逻辑

1. 为什么用哈希表?

哈希表(HashSet)提供 O(1) 的查找效率,能快速判断某个数是否存在,避免了暴力法中的嵌套循环。

2. 如何避免重复计数?

关键在于只从序列的起点开始计数。例如,对于序列 [1, 2, 3, 4],我们只在遇到 1 时才开始向后计数,遇到 2, 3, 4 时直接跳过。
判断条件:若 num-1 不存在于哈希表中,则 num 是序列起点。

四、记忆技巧:把代码变成“寻宝游戏”

用场景化记忆法理解最优解法的核心逻辑:

1. 角色赋值

  • 哈希表(numSet):扮演“地图”,标记所有宝藏位置(数字存在)。
  • 遍历过程:扮演“探险家”,在地图上寻找宝藏。
  • 序列起点:扮演“特殊宝藏”,只有找到它才能开启连续挖掘。

2. 游戏规则

① 探险家拿到地图(哈希表),标记所有宝藏位置。
② 探险家随机站在一个数字位置上,检查:

  • 如果左边一格(num-1)没有宝藏,则当前位置是“特殊宝藏”,可开启连续挖掘;
  • 如果左边有宝藏,则跳过当前位置(留给左边的宝藏来挖掘)。
    ③ 挖到一个宝藏后,持续向右挖掘(检查 num+1),记录最长连续挖掘长度。

3. 关键记忆点

  • 只从序列起点开始挖掘 → 避免重复计数。
  • 哈希表快速定位宝藏 → O(1) 查询效率。

五、实战拓展:变种题巩固思路

  1. 允许重复元素:原题已自动处理(哈希表去重)。
  2. 返回具体序列:在计数时记录起点和终点,最后构造序列。
  3. 双向扩展:同时向前(num-1, num-2, ...)和向后扩展,适用于“允许不连续但可排序”的场景。

通过“寻宝游戏”的场景记忆,最优解法的逻辑会变得非常直观。记住:算法的本质是“用合适的数据结构优化操作”,本题中哈希表的作用不仅是存储数据,更是为了快速判断“起点”,从而避免重复计算。多思考这种“筛选起点”的思想,能帮助你解决更多类似问题。

http://www.dtcms.com/wzjs/111276.html

相关文章:

  • 自助建站怎么实现的百度引擎入口
  • 用java做网页如何建立网站厦门seo优化
  • 淘宝客网站做的好的76人vs猛龙
  • b2c网站对比泰州seo外包公司
  • 淘宝客帮做网站win10优化工具下载
  • 如何做网站卖画河南新站关键词排名优化外包
  • seo网站推广可以自己搞吗广州市最新消息
  • 甘肃省建设厅招标办网站seo推广专员工作内容
  • 素材网站怎么推广域名网站查询
  • wordpress 已购资源临沂网站建设优化
  • wordpress快速发布工具江东seo做关键词优化
  • 如何做购物网站的限购功能代码搜索引擎搜索
  • 中国建设银行重庆网站奉化云优化seo
  • 上海免费做网站whois域名查询
  • 石家庄建站源码淘宝直通车推广怎么做
  • 帝国cms网站制作网站开发公司哪家好
  • 深圳龙岗网站建设公司推广系统
  • 加查网站建设国外免费域名申请
  • 网站的建设与规划方案推广软文范文800字
  • 建设网站对服务器有什么要求吗哈尔滨优化调整人员流动管理
  • 北京网站开发公司排名seo查询系统
  • 免费软件下载网站哪个好还有哪些平台能免费营销产品
  • 做海报图片的网站宁波超值关键词优化
  • 做外贸有哪些免费的网站有哪些seo快速排名外包
  • 深圳网站开发工资论坛推广案例
  • seo网站优化经理郑州seo优化
  • 校园网站建设招标公告合肥网络推广服务
  • 如何推广一个网站产品推广计划方案
  • 如何做外文网站seo必备软件
  • asp.net动态网站建设课程描述青岛最新消息