当前位置: 首页 > wzjs >正文

在建设银行网站上买卖贵金属腾讯广告联盟

在建设银行网站上买卖贵金属,腾讯广告联盟,dw 怎么做钓鱼网站,那个网站做的好Hbase布隆过滤器 小白的Hbase学习笔记 目录 Hbase布隆过滤器 1.过滤表中所有Value中 >23 的内容 2.获取表中age列大于23的所有RowKey值(1的改进) 3.比较以某个Value值开头的列 4.按前缀 准确值 后缀查找 5.获取RowKey中包含15001000的所有RowKe…

Hbase布隆过滤器

 

小白的Hbase学习笔记

 

目录

Hbase布隆过滤器

1.过滤表中所有Value中 >23 的内容

2.获取表中age列大于23的所有RowKey值(1的改进)

3.比较以某个Value值开头的列

4.按前缀 准确值 后缀查找

5.获取RowKey中包含15001000的所有RowKey(速度更快)

6.过滤列族名称以2结尾的RowKey数据

7.获取列名称以 na 开头的所有RowKey

8.对学生表中的信息进行过滤 条件有:1.所有性别为男性 2.所有文科班 3.年龄大于23岁


 

 

1.过滤表中所有Value中 >23 的内容

 

package com.shujia.comparator;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.BinaryComparator;
import org.apache.hadoop.hbase.filter.CompareFilter;
import org.apache.hadoop.hbase.filter.ValueFilter;
import org.apache.hadoop.hbase.util.Bytes;import java.io.IOException;
//过滤器/*** 需求:*      过滤表中所有Value中 >23 的内容*/
public class Code01ComparatorValue {public static void main(String[] args) throws IOException {Configuration conf = new Configuration();conf.set("hbase.zookeeper.quorum","node1,node2,master");Connection conn = ConnectionFactory.createConnection(conf);Table table = conn.getTable(TableName.valueOf("jan:tbl1"));Scan scan=new Scan();/*** (CompareOp valueCompareOp, ByteArrayComparable valueComparator)*///创建字节比较器 参数传入具体比较的值BinaryComparator binaryComparator = new BinaryComparator(Bytes.toBytes("23"));//该过滤器是针对于当前表中所有的值进行过滤 只要满足则返回一行 并且 如果不满足返回NULL//put 'jan:tbl1','1001','info:name','25'ValueFilter filter = new ValueFilter(CompareFilter.CompareOp.GREATER, binaryComparator);//设置过滤器scan.setFilter(filter);//获取扫描器对象ResultScanner scanner = table.getScanner(scan);for (Result result : scanner) {String rowKey = Bytes.toString(result.getRow());String name = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("name")));String age = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("age")));String gender = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("gender")));String clazz = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("clazz")));System.out.println(rowKey+","+name+","+age+","+gender+","+clazz);}table.close();conn.close();}
}

f0282c04f2904319bb0e74d546dff6be.png

 

2.获取表中age列大于23的所有RowKey值(1的改进)

 

package com.shujia.comparator;//需求:获取表中age列大于23的所有RowKey值
//01的改进代码
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.BinaryComparator;
import org.apache.hadoop.hbase.filter.CompareFilter;
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter;
import org.apache.hadoop.hbase.filter.ValueFilter;
import org.apache.hadoop.hbase.util.Bytes;import java.io.IOException;public class Code02ComparatorSingleColumns {public static void main(String[] args) throws IOException {Configuration conf = new Configuration();conf.set("hbase.zookeeper.quorum","node1,node2,master");Connection conn = ConnectionFactory.createConnection(conf);Table table = conn.getTable(TableName.valueOf("jan:tbl1"));Scan scan=new Scan();/*** 单列过滤器:*      用于过滤单列值*      返回的数据是满足条件的所有RowKey*注意:*      如果一条RowKey用于比较的列不存在 那么该RowKey也会被返回*/SingleColumnValueFilter filter = new SingleColumnValueFilter(Bytes.toBytes("info"),Bytes.toBytes("age"),CompareFilter.CompareOp.GREATER,Bytes.toBytes(23));//设置过滤器scan.setFilter(filter);//获取扫描器对象ResultScanner scanner = table.getScanner(scan);for (Result result : scanner) {String rowKey = Bytes.toString(result.getRow());String name = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("name")));String age = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("age")));String gender = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("gender")));String clazz = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("clazz")));System.out.println(rowKey+","+name+","+age+","+gender+","+clazz);}table.close();conn.close();}
}

7ea09daf85aa4d1dadf297030478f205.png

 

3.比较以某个Value值开头的列

 

package com.shujia.comparator;//该比较器用于比较以某个Value值开头的列
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.*;
import org.apache.hadoop.hbase.util.Bytes;import java.io.IOException;public class Code03ComparatorSingleColumns {public static void main(String[] args) throws IOException {Configuration conf = new Configuration();conf.set("hbase.zookeeper.quorum","node1,node2,master");Connection conn = ConnectionFactory.createConnection(conf);Table table = conn.getTable(TableName.valueOf("jan:tbl1"));Scan scan=new Scan();/*** 单列过滤器:*      用于过滤单列值*      返回的数据是满足条件的所有RowKey*注意:*      如果一条RowKey用于比较的列不存在 那么该RowKey也会被返回*/SingleColumnValueFilter filter = new SingleColumnValueFilter(Bytes.toBytes("info"),Bytes.toBytes("clazz"),CompareFilter.CompareOp.EQUAL,//该比较器用于比较以某个Value值开头的列new BinaryPrefixComparator(Bytes.toBytes("文科")));//二进制前缀比较器//new BinaryPrefixComparator(Bytes.toBytes("文科六")));//设置过滤器scan.setFilter(filter);//获取扫描器对象ResultScanner scanner = table.getScanner(scan);for (Result result : scanner) {String rowKey = Bytes.toString(result.getRow());String name = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("name")));String age = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("age")));String gender = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("gender")));String clazz = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("clazz")));System.out.println(rowKey+","+name+","+age+","+gender+","+clazz);}table.close();conn.close();}
}

ef74e68da6c94770832e84981bd86e28.png

 

4.按前缀 准确值 后缀查找

 

package com.shujia.comparator;//需求:获取RowKey中包含15001000的所有RowKeyimport org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.*;
import org.apache.hadoop.hbase.util.Bytes;import java.io.IOException;public class Code04ComparatorRowKey {public static void main(String[] args) throws IOException {Configuration conf = new Configuration();conf.set("hbase.zookeeper.quorum","node1,node2,master");Connection conn = ConnectionFactory.createConnection(conf);Table table = conn.getTable(TableName.valueOf("jan:tbl1"));Scan scan=new Scan();RowFilter filter = new RowFilter(CompareFilter.CompareOp.EQUAL//RowKey中的值以15001000为开头的, new BinaryPrefixComparator(Bytes.toBytes("15001000"))//如果我们想按照准确的信息查找//, new BinaryComparator(Bytes.toBytes("1500100001"))//通过RegexStringComparator的正则表达式过滤以98为结尾的内容//,new RegexStringComparator(".*02$"));//设置过滤器scan.setFilter(filter);//获取扫描器对象ResultScanner scanner = table.getScanner(scan);for (Result result : scanner) {String rowKey = Bytes.toString(result.getRow());String name = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("name")));String age = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("age")));String gender = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("gender")));String clazz = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("clazz")));System.out.println(rowKey+","+name+","+age+","+gender+","+clazz);}table.close();conn.close();}
}

5186a1be27c34841a2566f46ff27918a.png

9f8f375e23be46229ff14d2663e76ac4.png

ab1bb63ab91a44f1b098712ecbd7d0a3.png

 

5.获取RowKey中包含15001000的所有RowKey(速度更快)

 

package com.shujia.comparator;//需求:获取RowKey中包含15001000的所有RowKeyimport org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.*;
import org.apache.hadoop.hbase.util.Bytes;import java.io.IOException;public class Code05ComparatorPrefix {public static void main(String[] args) throws IOException {Configuration conf = new Configuration();conf.set("hbase.zookeeper.quorum","node1,node2,master");Connection conn = ConnectionFactory.createConnection(conf);Table table = conn.getTable(TableName.valueOf("jan:tbl1"));Scan scan=new Scan();/***相比于在RowFilter中添加 BinaryComparator(Bytes.toBytes("15001000"))* PrefixFilter 执行速度更快 效率更高*/PrefixFilter filter = new PrefixFilter(Bytes.toBytes("15001000"));//设置过滤器scan.setFilter(filter);//获取扫描器对象ResultScanner scanner = table.getScanner(scan);for (Result result : scanner) {String rowKey = Bytes.toString(result.getRow());String name = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("name")));String age = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("age")));String gender = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("gender")));String clazz = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("clazz")));System.out.println(rowKey+","+name+","+age+","+gender+","+clazz);}table.close();conn.close();}
}

366b349d6c1f48cc843d7e4087a927a2.png

 

6.过滤列族名称以2结尾的RowKey数据

 

package com.shujia.comparator;//需求:获取RowKey中包含15001000的所有RowKeyimport org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.*;
import org.apache.hadoop.hbase.util.Bytes;import java.io.IOException;
import java.util.List;//需求:
//      过滤列族名称以2结尾的RowKey数据public class Code06ComparatorFamily {public static void main(String[] args) throws IOException {Configuration conf = new Configuration();conf.set("hbase.zookeeper.quorum","node1,node2,master");Connection conn = ConnectionFactory.createConnection(conf);Table table = conn.getTable(TableName.valueOf("jan:tbl1"));Scan scan=new Scan();FamilyFilter filter = new FamilyFilter(CompareFilter.CompareOp.EQUAL, new RegexStringComparator(".*2$"));//desc 'jan:tbl1'//添加列族 alter 'jan:tbl1',{NAME => 'info2',VERSIONS => 1}//put 'jan:tbl1','1001','info2:name','zhangsan'//put 'jan:tbl1','1002','info2:name','zhangsan'//设置过滤器scan.setFilter(filter);//获取扫描器对象ResultScanner scanner = table.getScanner(scan);for (Result result : scanner) {List<Cell> cells = result.listCells();String rowKey = Bytes.toString(result.getRow());for (Cell cell : cells) {String family = Bytes.toString(CellUtil.cloneFamily(cell));String qualifier = Bytes.toString(CellUtil.cloneQualifier(cell));String value = Bytes.toString(CellUtil.cloneValue(cell));System.out.println(rowKey+","+family+","+qualifier+","+value);}}table.close();conn.close();}
}

777e78c120504c22bc4ae37f4a419678.png

81fccb2343df47c69dd2746208ca6a69.png

 

7.获取列名称以 na 开头的所有RowKey

 

package com.shujia.comparator;//需求:获取RowKey中包含15001000的所有RowKeyimport org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.*;
import org.apache.hadoop.hbase.util.Bytes;import java.io.IOException;
import java.util.List;//需求:
//      获取列名称以 na 开头的所有RowKeypublic class Code07ComparatorColumns {public static void main(String[] args) throws IOException {Configuration conf = new Configuration();conf.set("hbase.zookeeper.quorum","node1,node2,master");Connection conn = ConnectionFactory.createConnection(conf);Table table = conn.getTable(TableName.valueOf("jan:tbl1"));Scan scan=new Scan();ColumnPrefixFilter filter = new ColumnPrefixFilter(Bytes.toBytes("na"));//设置过滤器scan.setFilter(filter);//获取扫描器对象ResultScanner scanner = table.getScanner(scan);for (Result result : scanner) {List<Cell> cells = result.listCells();String rowKey = Bytes.toString(result.getRow());for (Cell cell : cells) {String family = Bytes.toString(CellUtil.cloneFamily(cell));String qualifier = Bytes.toString(CellUtil.cloneQualifier(cell));String value = Bytes.toString(CellUtil.cloneValue(cell));System.out.println(rowKey+","+family+","+qualifier+","+value);}}table.close();conn.close();}
}

061408d885614570bf897193e01647a3.png

 

8.对学生表中的信息进行过滤 条件有:1.所有性别为男性 2.所有文科班 3.年龄大于23岁

 

package com.shujia.comparator;//需求:
//      对学生表中的信息进行过滤 条件有:1.所有性别为男性 2.所有文科班 3.年龄大于23岁import com.sun.xml.internal.bind.v2.runtime.unmarshaller.XsiNilLoader;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.*;
import org.apache.hadoop.hbase.util.Bytes;import java.io.IOException;
import java.util.ArrayList;
import java.util.List;//需求:
//      获取列名称以 na 开头的所有RowKeypublic class Code08Comparator {public static void main(String[] args) throws IOException {Configuration conf = new Configuration();conf.set("hbase.zookeeper.quorum","node1,node2,master");Connection conn = ConnectionFactory.createConnection(conf);Table table = conn.getTable(TableName.valueOf("jan:tbl1"));Scan scan=new Scan();//1.所有性别为男性SingleColumnValueFilter filter1 = new SingleColumnValueFilter(Bytes.toBytes("info"), Bytes.toBytes("gender"), CompareFilter.CompareOp.EQUAL, new BinaryPrefixComparator(Bytes.toBytes("男")));//2.所有文科班SingleColumnValueFilter filter2 = new SingleColumnValueFilter(Bytes.toBytes("info"), Bytes.toBytes("clazz"), CompareFilter.CompareOp.EQUAL, new BinaryPrefixComparator(Bytes.toBytes("文科")));//3.年龄大于23岁SingleColumnValueFilter filter3 = new SingleColumnValueFilter(Bytes.toBytes("info"), Bytes.toBytes("age"), CompareFilter.CompareOp.GREATER, new BinaryPrefixComparator(Bytes.toBytes("23")));List<Filter> filters = new ArrayList<>();filters.add(filter1);filters.add(filter2);filters.add(filter3);FilterList filter = new FilterList(filters);//设置过滤器scan.setFilter(filter);//获取扫描器对象ResultScanner scanner = table.getScanner(scan);for (Result result : scanner) {String rowKey = Bytes.toString(result.getRow());String name = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("name")));String age = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("age")));String gender = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("gender")));String clazz = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("clazz")));System.out.println(rowKey+","+name+","+age+","+gender+","+clazz);}table.close();conn.close();}
}

d5cfd5c8ceb1469ba28f08696c50e95a.png

 

 

 

http://www.dtcms.com/wzjs/110839.html

相关文章:

  • 滁州新手跨境电商建站哪家好河北网站推广
  • 公司做网站价格seo标题优化导师咨询
  • 网站上传到万网主机惠州seo
  • wordpress响应式主题设计宁波seo推广服务
  • 北京网站建设 一流国外外链平台
  • 苹果软件 做ppt模板下载网站有哪些网站建设技术解决方案
  • 网站建设有什么专业术语成都网站seo服务
  • java做电影广告网站磁力搜索引擎2023
  • 西安网站建设公司十强海外推广营销系统
  • wpf做网站脚上起小水泡还很痒是怎么回事
  • wordpress二级菜单关键词优化按天计费
  • 网站根目录文件网站建设网络营销
  • 网站开发先学哪些知识重庆网页搜索排名提升
  • 网站访问速度跟服务器cpu和内存和带宽哪个重要企业软文营销发布平台
  • 做购实惠网站的意义热门国际新闻
  • 网站如何做数据库企查查在线查询
  • 如何修改自己的网站标题数据查询网站
  • 网站建设与网络推广长春网站建设公司哪家好
  • 网站设计的文案青岛seo推广公司
  • 青岛网站建设有限公司安卓优化大师最新版
  • 网站怎么做滚动图片免费做网站怎么做网站吗
  • wordpress不会安装北京搜索引擎关键词优化
  • 表白网站制作教程百度推广引流
  • 网站运营及推广方案百度旅游官网
  • 杭州e时代互联网站建设百度入驻商家
  • 株洲网站建设公司宁波seo搜索引擎优化
  • 如何建立网站自己做站长16种营销模型
  • wordpress全站cdn搜索引擎哪个好用
  • 潜江58同城seo关键词挖掘
  • 电商购物网站模板下载so导航 抖音