当前位置: 首页 > wzjs >正文

自己做优惠劵网站赚钱吗软文生成器

自己做优惠劵网站赚钱吗,软文生成器,免费做网站表白,广州网站建设服务哪家好知识点回顾: PyTorch和cuda的安装查看显卡信息的命令行命令(cmd中使用)cuda的检查简单神经网络的流程 数据预处理(归一化、转换成张量)模型的定义 继承nn.Module类定义每一个层定义前向传播流程 定义损失函数和优化器定…
知识点回顾:
  1. PyTorch和cuda的安装
  2. 查看显卡信息的命令行命令(cmd中使用)
  3. cuda的检查
  4. 简单神经网络的流程
    1. 数据预处理(归一化、转换成张量)
    2. 模型的定义
      1. 继承nn.Module类
      2. 定义每一个层
      3. 定义前向传播流程
    3. 定义损失函数和优化器
    4. 定义训练流程
    5. 可视化loss过程

预处理补充:

注意事项:

1. 分类任务中,若标签是整数(如 0/1/2 类别),需转为long类型(对应 PyTorch 的torch.long),否则交叉熵损失函数会报错。

2. 回归任务中,标签需转为float类型(如torch.float32)。

作业:今日的代码,要做到能够手敲。这已经是最简单最基础的版本了。

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.preprocessing import MinMaxScaler
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as npif torch.cuda.is_available():print("CUDA可用!")# 获取可用的CUDA设备数量device_count = torch.cuda.device_count()print(f"可用的CUDA设备数量: {device_count}")# 获取当前使用的CUDA设备索引current_device = torch.cuda.current_device()print(f"当前使用的CUDA设备索引: {current_device}")# 获取当前CUDA设备的名称device_name = torch.cuda.get_device_name(current_device)print(f"当前CUDA设备的名称: {device_name}")# 获取CUDA版本cuda_version = torch.version.cudaprint(f"CUDA版本: {cuda_version}")
else:print("CUDA不可用。")# 加载4特征,3分类的鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# # 打印下尺寸
# print(X_train.shape)
# print(y_train.shape)
# print(X_test.shape)
# print(y_test.shape)# 归一化数据,神经网络对于输入数据的尺寸敏感,归一化是最常见的处理方式
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test) #确保训练集和测试集是相同的缩放# 转换为PyTorch张量
X_train=torch.FloatTensor(X_train) 
X_test=torch.FloatTensor(X_test) 
y_train=torch.LongTensor(y_train) 
y_test=torch.LongTensor(y_test) # print(X_train.shape)
# print(y_train.shape)
# print(X_test.shape)
# print(y_test.shape)class MLP(nn.Module): # 定义一个多层感知机MLP模型,继承nn.Module类def __init__(self):super(MLP,self).__init__() #调用父类的构造函数self.fc1=nn.Linear(4,10) #输入层到隐藏层,4个特征,10个神经元self.relu=nn.ReLU() #激活函数self.fc2=nn.Linear(10,3) #隐藏层到输出层,10个神经元,3个类别def forward(self,x): #前向传播out=self.fc1(x) #输入层到隐藏层out=self.relu(out) #激活函数out=self.fc2(out) #隐藏层到输出层return out #返回输出层的结果model=MLP() #实例化模型criterion=nn.CrossEntropyLoss() #定义损失函数,交叉熵损失函数,适用于多分类问题optimizer=optim.SGD(model.parameters(),lr=0.01) #定义优化器,随机梯度下降,学习率为0.01num_epochs=20000 #定义训练轮数
losses=[] #定义一个列表,用于存储损失值
for epoch in range(num_epochs):outputs=model.forward(X_train) #前向传播,得到输出层的结果loss=criterion(outputs,y_train) #计算损失值,y_train是真实标签,outputs是模型的预测值losses.append(loss.item()) #记录损失值optimizer.zero_grad() #清空梯度loss.backward() #反向传播,计算梯度optimizer.step() #更新参数if (epoch+1)%1000==0: #每10000轮输出一次损失值print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')import matplotlib.pyplot as plt
# 可视化损失曲线
plt.plot(range(num_epochs), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()

http://www.dtcms.com/wzjs/108212.html

相关文章:

  • 北京知名网站建设公司排名廊坊网站建设优化
  • jq网站登录记住密码怎么做百度推广营销页
  • 重庆网站建设的意义广告优化师培训
  • 服务型网站有哪些石家庄seo外包公司
  • 企业网站建设遵循的原则磁力宅
  • 电子商务网站的建设与规划书怎么做谷歌推广
  • 无锡梦燕服饰网站谁做的深圳抖音seo
  • behance设计网站入口青岛seo外包公司
  • wordpress adsense integratorseo服务公司招聘
  • 宁夏手机网站建设推广普通话内容50字
  • 网站图片上传功能怎么做二十条优化措施原文
  • 做网站的公司 设计好南京广告宣传公司seo
  • 网站建设营销型号的区别上海好的seo公司
  • 做论文常用网站有哪些优化近义词
  • 哪个网站可以找做软件兼职的安卓在线视频嗅探app
  • 响应式网站怎么做mip整站seo优化哪家好
  • win7dw做asp购物网站天猫代运营
  • 政府电子网站建设解决方案商业推广软文范例
  • discuz网站搬家教程百度的特点和优势
  • 国外做地铁设计的公司网站网络营销包括几个部分
  • 把别人的图片拿来做网站网站优化系统
  • 网站推广每天必做的流程品牌宣传策划方案
  • 17一起做网店网站百度第三季度财报2022
  • 西安咪豆网站建设公司网站媒体推广方案
  • 用wordpress做购物网站营销推广公司案例
  • 手机wap网站导航模板seo管理系统创作
  • 遵义市播州区建设厅网站产品网络推广怎样做
  • 网站一般多少钱一年淘宝关键词指数查询
  • 回到明朝当王爷seo去哪学
  • 给人做传销网站google浏览器官网下载