当前位置: 首页 > wzjs >正文

房山区住房和城乡建设委员会网站新平台推广赚钱

房山区住房和城乡建设委员会网站,新平台推广赚钱,九江市做网站的公司,春秋网络优化技术团队介绍在第一部分中,我们了解了MapReduce的基本概念和如何使用Python2编写MapReduce程序进行简单的单词计数。今天,我们将深入探讨如何使用MapReduce处理更复杂的数据源,比如HDFS中的CSV文件,并将结果输出到HDFS。通过更复杂的实践案例&…

在第一部分中,我们了解了MapReduce的基本概念和如何使用Python2编写MapReduce程序进行简单的单词计数。今天,我们将深入探讨如何使用MapReduce处理更复杂的数据源,比如HDFS中的CSV文件,并将结果输出到HDFS。通过更复杂的实践案例,进一步了解MapReduce的应用。

1. 复杂的MapReduce任务概述

在实际生产环境中,数据通常存储在分布式文件系统中,例如HDFS(Hadoop Distributed File System)。MapReduce非常适合于这种场景,能够对HDFS中的大规模数据进行处理。在这部分中,我们将处理一个CSV文件,该文件存储着一些结构化的数据,例如用户访问记录或销售数据。

我们的目标是:

  1. 从HDFS中读取CSV文件。
  2. 进行数据处理(例如统计每个产品的销售总额)。
  3. 将结果输出回HDFS。
  4. 最后,使用HDFS命令检查结果。
2. 处理CSV文件的MapReduce任务

假设我们的CSV文件格式如下:

product_id,product_name,sales_amount
1,Product A,100
2,Product B,200
3,Product A,150
4,Product C,50
5,Product B,300
6,Product A,120

我们的任务是统计每个产品的总销售额,即将product_name作为键,sales_amount作为值,最终输出每个产品的销售总额。

3. 编写MapReduce代码
3.1 Mapper

在Map函数中,我们将每行CSV数据中的product_namesales_amount提取出来,并输出成(product_name, sales_amount)的键值对。

import sys
import csvdef mapper():for line in sys.stdin:# 跳过文件的表头if line.startswith("product_id"):continue# 读取CSV行并提取product_name和sales_amountcolumns = line.strip().split(",")product_name = columns[1]sales_amount = int(columns[2])# 输出 (product_name, sales_amount)print(f"{product_name}\t{sales_amount}")

在此代码中,我们首先跳过文件头部(如果有的话),然后从每行数据中提取出产品名称和销售金额,最后输出一个以product_name为键,sales_amount为值的键值对。

3.2 Reducer

Reducer的任务是对来自Mapper的相同product_namesales_amount进行求和,得到每个产品的总销售额。

import sysdef reducer():current_product = Nonetotal_sales = 0for line in sys.stdin:product_name, sales_amount = line.strip().split("\t")sales_amount = int(sales_amount)if current_product == product_name:total_sales += sales_amountelse:if current_product:# 输出 (product_name, total_sales)print(f"{current_product}\t{total_sales}")current_product = product_nametotal_sales = sales_amountif current_product == product_name:print(f"{current_product}\t{total_sales}")

此代码的作用是对每个product_name的所有sales_amount进行求和,并输出结果。

3.3 执行MapReduce任务

现在,我们可以通过管道执行MapReduce任务,假设输入数据存储在HDFS中的/user/hadoop/input/sales.csv路径下,输出路径为/user/hadoop/output/sales_result

在终端中执行MapReduce任务:

hadoop fs -cat /user/hadoop/input/sales.csv | python mapper.py | sort | python reducer.py > result.txt

4. 将输出结果存储到HDFS

在前面的步骤中,输出结果保存在本地文件result.txt中。我们希望将结果直接写入HDFS。

为了将输出结果直接输出到HDFS,MapReduce任务通常由Hadoop执行,Hadoop的Streaming API允许我们将Map和Reduce任务提交到集群进行处理。以下是使用Hadoop提交作业的步骤:

  1. 将Python脚本上传到HDFS。
hadoop fs -put mapper.py /user/hadoop/mapper.py
hadoop fs -put reducer.py /user/hadoop/reducer.py
  1. 提交MapReduce作业。
hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar \-input /user/hadoop/input/sales.csv \-output /user/hadoop/output/sales_result \-mapper "python2 /user/hadoop/mapper.py" \-reducer "python2 /user/hadoop/reducer.py"
  1. 查看结果。

MapReduce作业完成后,结果会存储在指定的输出目录(/user/hadoop/output/sales_result)中。我们可以使用HDFS命令查看输出文件:

hadoop fs -cat /user/hadoop/output/sales_result/part-00000

输出结果将会类似于:

Product A    370
Product B    500
Product C    50
5. 总结与优化

在这一部分中,我们介绍了如何使用MapReduce处理存储在HDFS中的CSV文件,并将结果输出回HDFS。通过这个实例,我们看到了如何将Map和Reduce函数与Hadoop的Streaming API结合使用,处理大规模分布式数据。

需要注意的是,MapReduce虽然是一种强大的分布式计算模型,但它的效率可能受限于多个因素:

  1. Shuffle过程:当数据量较大时,Shuffle过程可能导致网络瓶颈,影响性能。
  2. 优化Map和Reduce函数:为提高效率,可以使用适当的数据结构,避免不必要的计算,优化内存使用。

对于大数据任务,除了MapReduce,还有其他高效的处理框架(如Apache Spark),可以根据具体需求进行选择。

通过本教程,您已经能够使用MapReduce处理HDFS上的CSV数据,并将结果输出到HDFS。在实际生产环境中,这一过程可以扩展到更复杂的数据处理任务,例如日志分析、流量统计等。

http://www.dtcms.com/wzjs/100973.html

相关文章:

  • 江西医疗网站建设网站关键词优化案例
  • 青海教育厅门户网站网络服务中心
  • 莱芜梆子网站google app下载
  • 做网站色弱可以吗自助建站系统
  • jsp做网站都可以做什么廊坊百度快照优化
  • 导师让做网站seo是广告投放吗
  • 医院网站建设需求分析北京千锋教育培训机构怎么样
  • 如何建b2b网站下店拓客团队
  • php商城网站建设多少钱广告软文案例
  • 东莞南城做网站推广的公司自己建站的网站
  • 网站建设的公司太多了手机游戏性能优化软件
  • 濮阳网站建设在哪里中国新冠一共死去的人数
  • Cocos做网站登录百度app
  • 网络营销的营销模式优化seo软件
  • 免费手机网站建站系统电话营销外包公司
  • 网站后台操作规范营销型网站制作
  • 济南集团网站建设流程电商网站模板
  • 门户论坛模板电脑优化软件排行榜
  • 做测试如何搭建一个网站服务器简述什么是网络营销
  • 基本的网站建设知识企业查询天眼查
  • 桂林市自来水公司网站广东新闻今日大件事
  • wordpress image.phpseo搜索优化软件
  • 知名网站建设公司 北京域名大全查询
  • 个人养老金交15年领多少seo云优化是什么意思
  • 网站设计公司排名京东关键词优化技巧
  • 网站开发合作意向书网站关键词在哪里看
  • wordpress获取首页url北京seo公司
  • 做网站预付款 怎么做账青岛百度推广seo价格
  • 高端网站建设kgwl市场营销最有效的手段
  • 邯郸专业网站建设公司北京seo招聘