漳州网站建设免费域名
一、语音识别技术选型与硅基流动生态解析
1.1 DeepSeek-ASR核心优势
硅基流动平台提供的DeepSeek语音识别服务,在AISHELL-3测试集上实现**96.2%**的准确率,其技术特性包括:
- 多方言支持:覆盖普通话、粤语、川渝方言等8种语言变体
- 噪声抑制:采用Wave-U-Net降噪算法2
- 时间戳定位:支持词语级精度的音频定位(±50ms)
- 免费额度:新用户赠送2000万token(约处理1万小时音频)
- 价格便宜:新用户注册即送14元,而且可以自由充值。注册地址:硅基流动官网
1.2 Spring AI技术栈整合方案
通过Spring AI的统一AI模型接口,开发者可实现:
@Configuration
public class AiConfig {@Bean public DeepSeekAudioTranscriptionClient transcriptionClient() {return new DeepSeekAudioTranscriptionClient(new SiliconFlowService("sk-xxx"), new AudioTranscriptionOptions());}
}
注意
:使用spring-AI功能,必须保证springboot版本在3.0以上,且Java版本至少为17+。
二、环境搭建与SDK深度集成
2.1 硅基流动账号配置
访问硅基流动控制台 ,创建ASR专属应用
获取API密钥并配置Quota策略(建议设置QPS≤20)
下载Java SDK并导入本地Maven仓库:
<dependency><groupId>cn.siliconflow</groupId> <artifactId>deepseek-sdk</artifactId><version>2.3.1</version>
</dependency>
创建秘钥地址如下图
2.2 Spring Boot工程配置
application.yml
siliconflow:api-key: sk-xxx audio:endpoint: https://api.siliconflow.cn/v1/audio/transcriptions max-duration: 3600 # 最大音频时长(秒)allowed-formats: [wav, mp3, flac]
三、工业级语音处理流水线设计
3.1 音频预处理模块
public AudioFile preprocessAudio(MultipartFile file) throws IOException {// FFmpeg格式转换 String cmd = String.format("ffmpeg -i %s -ar 16000 -ac 1 %s", file.getOriginalFilename(), "output.wav"); Runtime.getRuntime().exec(cmd); // 分块处理(每5分钟一个块)return AudioSplitter.splitByDuration( Paths.get("output.wav"), Duration.ofMinutes(5));
}
3.2 异步批处理实现
@Async("audioTaskExecutor")
public CompletableFuture<Transcript> processChunk(AudioChunk chunk) {TranscriptionRequest request = new TranscriptionRequest(chunk.getPath(), new TranscriptionParams(LanguageType.MANDARIN, true));return CompletableFuture.supplyAsync(() -> siliconFlowService.transcribe(request));
}
四、核心业务逻辑实现
4.1 控制器层实现
@PostMapping("/transcribe")
public ResponseEntity<TranscriptResult> transcribe(@RequestParam("file") MultipartFile file,@RequestParam(value = "diarization", defaultValue = "false") boolean diarization) {// 参数校验 if (!audioService.validateFormat(file)) {throw new InvalidAudioFormatException();}// 预处理与识别 AudioFile processed = audioService.preprocess(file); List<CompletableFuture<Transcript>> futures = audioService.splitAndRecognize(processed); // 结果合并 return ResponseEntity.ok(TranscriptMerger.merge(futures));
}
4.2 语音识别核心服务
@Service
public class AudioTranscriptionService {private final SiliconFlowService sfService;private final ThreadPoolTaskExecutor executor;@Autowired public AudioTranscriptionService(SiliconFlowService sfService) {this.sfService = sfService;this.executor = new ThreadPoolTaskExecutor();this.executor.setCorePoolSize(10); this.executor.setMaxPoolSize(50); }public Transcript recognize(Path audioPath) {TranscriptionRequest request = new TranscriptionRequest(audioPath, new TranscriptionParams(LanguageType.MANDARIN, true));return sfService.transcribe(request) .retryWhen(Retry.backoff(3, Duration.ofSeconds(1))); }
}
五、高级特性实现方案
5.1 说话人分离(Diarization)
public DiarizationResult diarize(Transcript transcript) {List<SpeakerSegment> segments = transcript.getSegments() .stream().filter(s -> s.getSpeakerTag() != null).collect(Collectors.groupingBy(Segment::getSpeakerTag)) .entrySet().stream().map(e -> new SpeakerSegment(e.getKey(), mergeText(e.getValue()))) .collect(Collectors.toList()); return new DiarizationResult(segments);
}
5.2 实时流式识别
@GetMapping(value = "/stream", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
public Flux<TranscriptChunk> streamTranscription(@RequestParam String audioUrl) {return WebClient.create() .get().uri(audioUrl).accept(MediaType.APPLICATION_OCTET_STREAM).retrieve().bodyToFlux(DataBuffer.class) .window(Duration.ofSeconds(5)) .flatMap(window -> sfService.streamTranscribe(window, new TranscriptionParams())).timeout(Duration.ofMinutes(30));
}
六、性能优化与生产部署
6.1 负载均衡策略
siliconflow:cluster-nodes:- host: node1.siliconflow.cn weight: 30 - host: node2.siliconflow.cn weight: 70
6.2 监控指标采集
@Bean
public MeterRegistryCustomizer<PrometheusMeterRegistry> configureMetrics() {return registry -> {registry.config().meterFilter( new MeterFilter() {@Override public DistributionStatisticConfig configure(Meter.Id id, DistributionStatisticConfig config) {if (id.getName().contains("audio_transcription")) {return DistributionStatisticConfig.builder() .percentiles(0.5, 0.95, 0.99).build().merge(config);}return config;}});};
}
七、安全防护方案
7.1 音频文件病毒扫描
public void scanForMalware(Path filePath) throws VirusDetectedException {try (ClamAVClient client = new ClamAVClient("192.168.1.100", 3310)) {byte[] reply = client.scan(filePath); if (!ClamAVClient.isCleanReply(reply)) {throw new VirusDetectedException(ClamAVClient.getResult(reply)); }}
}
7.2 敏感词过滤
public Transcript filterSensitiveWords(Transcript transcript) {SensitiveWordFilter filter = new AhoCorasickFilter();return transcript.getSegments() .stream().map(segment -> new Segment(filter.filter(segment.getText()), segment.getStart(), segment.getEnd())) .collect(Transcript.collector());
}