当前位置: 首页 > news >正文

【AI】10卡的GPU服务器,Docker 配置 docker-compose.yml 限制指定使用最后两块GPU 序号8,9

GPU状态

+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.86.10              Driver Version: 570.86.10      CUDA Version: 12.8     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4090        Off |   00000000:0C:00.0 Off |                  Off |
| 30%   26C    P8             18W /  450W |   23393MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA GeForce RTX 4090        Off |   00000000:25:00.0 Off |                  Off |
| 30%   27C    P8             28W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   2  NVIDIA GeForce RTX 4090        Off |   00000000:32:00.0 Off |                  Off |
| 30%   27C    P8              6W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   3  NVIDIA GeForce RTX 4090        Off |   00000000:45:00.0 Off |                  Off |
| 30%   27C    P8             18W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   4  NVIDIA GeForce RTX 4090        Off |   00000000:58:00.0 Off |                  Off |
| 30%   28C    P8             24W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   5  NVIDIA GeForce RTX 4090        Off |   00000000:84:00.0 Off |                  Off |
| 30%   27C    P8             21W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   6  NVIDIA GeForce RTX 4090        Off |   00000000:98:00.0 Off |                  Off |
| 30%   26C    P8             16W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   7  NVIDIA GeForce RTX 4090        Off |   00000000:AC:00.0 Off |                  Off |
| 30%   28C    P8             27W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   8  NVIDIA GeForce RTX 4090        Off |   00000000:C0:00.0 Off |                  Off |
| 30%   27C    P8             22W /  450W |     439MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   9  NVIDIA GeForce RTX 4090        Off |   00000000:D4:00.0 Off |                  Off |
| 30%   25C    P8             22W /  450W |       4MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

配置docker-compose.yml

services:
  ragflow:    
    environment:      
      - NVIDIA_VISIBLE_DEVICES=0,1      # 内部序号还是0,1 不是外部的8,9   
    deploy:
      resources:
        reservations:
          devices:
            - driver: nvidia
              device_ids: ["8","9"]
              capabilities: [gpu]

注意:

1. 内部环境变量仍然是0,1

2. device_ids参数是字符串数组,不是整形数组

效果:

# docker exec -it ragflow-server nvidia-smi
Thu Mar 27 00:23:16 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.86.10              Driver Version: 570.86.10      CUDA Version: 12.8     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4090        Off |   00000000:C0:00.0 Off |                  Off |
| 30%   25C    P8             22W /  450W |     439MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA GeForce RTX 4090        Off |   00000000:D4:00.0 Off |                  Off |
| 30%   23C    P8             22W /  450W |       4MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI              PID   Type   Process name                        GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A              18      C   python3                                 430MiB |
+-----------------------------------------------------------------------------------------+
观察GPU内存,可以确认容器内部是使用末尾的两块GPU

相关文章:

  • 欧几里得距离(Euclidean Distance)公式
  • ue材质学习感想总结笔记
  • leetcode230.二叉搜索树中第k小的元素
  • C# 固高板卡(总线型) 操作类
  • C++指针(五)完结篇
  • 19 python 模块
  • 【数据结构】C语言实现并查集:双亲指针映射与动态连通性实现详解
  • stable diffusion 本地部署教程 2025最新版
  • Docker 存储管理那些事儿:简单易懂的讲解与实践示例
  • Codeforces 1011 (Div. 2)A. Serval and String Theory
  • vue+webpack5(高级配置)
  • fluent_UDF学习笔记
  • 进程间通信——信号量
  • git 如何统计还尚未合并完成的文件
  • UE4学习笔记 FPS游戏制作31 显示计分板
  • flex和bison笔记
  • 2025最新“科研创新与智能化转型“暨AI智能体开发与大语言模型的本地化部署、优化技术实践
  • 【MySQL基础-14】MySQL的INSERT语句详解:高效数据插入的艺术
  • 数据特征的判断
  • 机器学习算法
  • 佩斯科夫:俄方代表团15日将在伊斯坦布尔等候乌克兰代表团
  • 七部门:进一步增强资本市场对于科技创新企业的支持力度
  • 媒体:“西北大学副校长范代娣成陕西首富”系乌龙,但她的人生如同开挂
  • 微软宣布将裁员3%
  • 美国务卿鲁比奥将前往土耳其参加俄乌会谈
  • 北京航空航天大学首个海外创新研究院落户巴西