当前位置: 首页 > news >正文

【AI】10卡的GPU服务器,Docker 配置 docker-compose.yml 限制指定使用最后两块GPU 序号8,9

GPU状态

+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.86.10              Driver Version: 570.86.10      CUDA Version: 12.8     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4090        Off |   00000000:0C:00.0 Off |                  Off |
| 30%   26C    P8             18W /  450W |   23393MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA GeForce RTX 4090        Off |   00000000:25:00.0 Off |                  Off |
| 30%   27C    P8             28W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   2  NVIDIA GeForce RTX 4090        Off |   00000000:32:00.0 Off |                  Off |
| 30%   27C    P8              6W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   3  NVIDIA GeForce RTX 4090        Off |   00000000:45:00.0 Off |                  Off |
| 30%   27C    P8             18W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   4  NVIDIA GeForce RTX 4090        Off |   00000000:58:00.0 Off |                  Off |
| 30%   28C    P8             24W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   5  NVIDIA GeForce RTX 4090        Off |   00000000:84:00.0 Off |                  Off |
| 30%   27C    P8             21W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   6  NVIDIA GeForce RTX 4090        Off |   00000000:98:00.0 Off |                  Off |
| 30%   26C    P8             16W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   7  NVIDIA GeForce RTX 4090        Off |   00000000:AC:00.0 Off |                  Off |
| 30%   28C    P8             27W /  450W |   23703MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   8  NVIDIA GeForce RTX 4090        Off |   00000000:C0:00.0 Off |                  Off |
| 30%   27C    P8             22W /  450W |     439MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   9  NVIDIA GeForce RTX 4090        Off |   00000000:D4:00.0 Off |                  Off |
| 30%   25C    P8             22W /  450W |       4MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

配置docker-compose.yml

services:
  ragflow:    
    environment:      
      - NVIDIA_VISIBLE_DEVICES=0,1      # 内部序号还是0,1 不是外部的8,9   
    deploy:
      resources:
        reservations:
          devices:
            - driver: nvidia
              device_ids: ["8","9"]
              capabilities: [gpu]

注意:

1. 内部环境变量仍然是0,1

2. device_ids参数是字符串数组,不是整形数组

效果:

# docker exec -it ragflow-server nvidia-smi
Thu Mar 27 00:23:16 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.86.10              Driver Version: 570.86.10      CUDA Version: 12.8     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 4090        Off |   00000000:C0:00.0 Off |                  Off |
| 30%   25C    P8             22W /  450W |     439MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA GeForce RTX 4090        Off |   00000000:D4:00.0 Off |                  Off |
| 30%   23C    P8             22W /  450W |       4MiB /  24564MiB |      0%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI              PID   Type   Process name                        GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A              18      C   python3                                 430MiB |
+-----------------------------------------------------------------------------------------+
观察GPU内存,可以确认容器内部是使用末尾的两块GPU

http://www.dtcms.com/a/97364.html

相关文章:

  • 欧几里得距离(Euclidean Distance)公式
  • ue材质学习感想总结笔记
  • leetcode230.二叉搜索树中第k小的元素
  • C# 固高板卡(总线型) 操作类
  • C++指针(五)完结篇
  • 19 python 模块
  • 【数据结构】C语言实现并查集:双亲指针映射与动态连通性实现详解
  • stable diffusion 本地部署教程 2025最新版
  • Docker 存储管理那些事儿:简单易懂的讲解与实践示例
  • Codeforces 1011 (Div. 2)A. Serval and String Theory
  • vue+webpack5(高级配置)
  • fluent_UDF学习笔记
  • 进程间通信——信号量
  • git 如何统计还尚未合并完成的文件
  • UE4学习笔记 FPS游戏制作31 显示计分板
  • flex和bison笔记
  • 2025最新“科研创新与智能化转型“暨AI智能体开发与大语言模型的本地化部署、优化技术实践
  • 【MySQL基础-14】MySQL的INSERT语句详解:高效数据插入的艺术
  • 数据特征的判断
  • 机器学习算法
  • mysql不能远程访问可能有哪些原因,及如何解决
  • ubuntu 创建新用户
  • 权值线段树算法讲解及例题
  • 性能测试理论基础-测试流程及方案设计要点
  • 内联函数/函数重载/函数参数缺省
  • 211 本硕研三,已拿 C++ 桌面应用研发 offer,计划转音视频或嵌入式如何规划学习路线?
  • 前端框架入门:Angular
  • Flutter中实现拍照识题的功能
  • Starrocks架构及如何选择
  • 60V单通道高精度线性恒流LED驱动器防60V反接SOD123封装