Pytroch搭建全连接神经网络识别MNIST手写数字数据集
编写步骤
之前已经记录国多次的编写步骤了,无需多言。
(1)准备数据集
这里我们使用MNIST数据集,有官方下载渠道。我们直接使用torchvison里面提供的数据读取功能包就行。如果不使用这个,自己像这样子构建也一样。
# 自己构建数据读取模块
#(1) 数据读取模块
class Mydataset(Dataset):
def __init__(self,filepath):
xy=np.loadtxt(filepath,delimiter=',',dtype=np.float32)
self.len=xy.shape[0]
self.x_data=torch.from_numpy(xy[:,:-1])
self.y_data=torch.from_numpy(xy[:,[-1]])
#魔法方法,容许用户通过索引index得到值
def __getitem__(self,index):
return self.x_data[index],self.y_data[index]
def __len__(self):
return self.len
这里直接使用torchvison里面的工具
#准备数据集
batch_size = 64
transforms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))])
trainset = torchvision.datasets.MNIST(root=r'../data/mnist',
train=True,
download=True,
transform=transforms)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True)
testset = torchvision.datasets.MNIST(root=r'../data/mnist',
train=False,
download=True,
transform=transforms)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False)
(2) 构建模型
这次我们使用不带dropout的全连接模型
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.linear1 = nn.Linear(784, 100)
self.linear2 = nn.Linear(100, 20)
self.linear3 = nn.Linear(20, 10)
def forward(self, x):
x=x.view(x.size(0), -1)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
(3) 选择损失和优化器
# 构建模型和损失
model=Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
(4)训练模型
def train(epoch):
running_loss = 0.0
for batch_idx, (inputs, targets) in enumerate(trainloader):
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
#需要将张量转换为浮点数运算
running_loss += loss.item()
if batch_idx % 100 == 0:
print('Train Epoch: {}, Loss: {:.6f}'.format(epoch, loss.item()))
running_loss = 0
(5)测试模型
def test(epoch):
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct=correct+(predicted.eq(targets).sum()*1.0)
print('Accuracy of the network on the 10000 test images: %d %%' % (100*correct/total))
全部代码
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
#准备数据集
batch_size = 64
transforms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,),(0.3081,))])
trainset = torchvision.datasets.MNIST(root=r'../data/mnist',
train=True,
download=True,
transform=transforms)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True)
testset = torchvision.datasets.MNIST(root=r'../data/mnist',
train=False,
download=True,
transform=transforms)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.linear1 = nn.Linear(784, 100)
self.linear2 = nn.Linear(100, 20)
self.linear3 = nn.Linear(20, 10)
def forward(self, x):
x=x.view(x.size(0), -1)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
# 构建模型和损失
model=Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
def train(epoch):
running_loss = 0.0
for batch_idx, (inputs, targets) in enumerate(trainloader):
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
#需要将张量转换为浮点数运算
running_loss += loss.item()
if batch_idx % 100 == 0:
print('Train Epoch: {}, Loss: {:.6f}'.format(epoch, loss.item()))
running_loss = 0
def test(epoch):
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct=correct+(predicted.eq(targets).sum()*1.0)
print('Accuracy of the network on the 10000 test images: %d %%' % (100*correct/total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test(epoch)