3.28 代码随想录第二十九天打卡
62.不同路径
(1)题目描述:
(2)解题思路:
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};
(3)总结:
1.清楚dp[i-1][j]和dp[i][j-1]所表示的是有多少种路径,然后上方有多少种路径加上左方有多少种路径就是一共走到finish有多少路
2.都应该是从左往右遍历和从上往下遍历出来的
63. 不同路径 II
(1)题目描述:
(2)解题思路:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0
return 0;
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};
(3)总结:
1.遇到障碍后,障碍后面的部分都不再进行了,不会初始化为1
343. 整数拆分
(1)题目描述:
(2)解题思路:
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n + 1);
dp[2] = 1;
for (int i = 3; i <= n ; i++) {
for (int j = 1; j <= i / 2; j++) {
dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
}
}
return dp[n];
}
};
(3)总结:
1.拆成的数最好近似相等,这样能保证乘积最大
2.分为两种情况拆成两个数或拆成三个数及以上(对i-j进行一个拆分要清楚为什么前面的j不用拆分)
96.不同的二叉搜索树
(1)题目描述:
(2)解题思路:
class Solution {
public:
int numTrees(int n) {
vector<int> dp(n + 1);
dp[0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
dp[i] += dp[j - 1] * dp[i - j];
}
}
return dp[n];
}
};