当前位置: 首页 > news >正文

【NLP 48、大语言模型的神秘力量 —— ICL:in context learning】

目录

一、ICL的优势

1.传统做法

2.ICL做法

二、ICL的发展 

三、ICL成因的两种看法

1.meta learning

2.Bayesian Inference

四、ICL要点

① 语言模型的规模

② 提示词prompt中提供的examples数量和顺序

③ 提示词prompt的形式(format)

五、fine-tune VS ICL


不要抓着枯叶哭泣,你要等待初春的芽

                                                —— 25.3.26

一、ICL的优势

1.传统做法

任务定义 ——> 建立标注规范 ——> 标注人员学习标注规范 ——> 标注人员进行标注 ——> 对标注结果进行审核 ——> 使用标注数据训练模型 ——> 模型验证效果 ——> 模型实际预测

2.ICL做法

任务定义 ——> 模型实际预测

ICL方法如果完全成熟,意味着fine-tune范式的终结


二、ICL的发展 

关于ICL的成因,目前学术界没有被广泛认可的解释,只有若干假说和一些表现分析。

在GPT3的论文中,z-s【zero-shot】,o-s【one-shot】,f-s【few-shot】都属于ICL 


chain-of-thought思维链属于ICL


GPT3给出参考:在输入中加入至少一个样本,能大幅提升ICL效果

对于一个较大的模型而言,给出一个例子就可以显著的提升ICL的效果,给出Few-shot,准确性还会有所提升

对于一个较弱的模型而言,给出多少例子都不会显著提升ICL的效果


fine-tune会伤害ICL能力


精巧的提示词prompt设计有可能超过os、fs,可以通过提示词的改写进一步提高ICL的能力 


Magical word

不给出思维链,而是在输入时多加入一句提示词,需要模型一步步思考:Let's think step by step

模型就可以像思维链一样主动发出思考,最终输出正确的结果


ICL时输入错误样本,不一定影响准确率

我们发现,用随机标签替换正确标签只会略微影响性能,这一趋势在几乎整个过程中是一致的


ICL可以压倒先验知识


三、ICL成因的两种看法

1.meta learning

大模型能在内部训练小型网络

2.Bayesian Inference

模型任务可以看作一个贝叶斯一样的多条件概率的组合,pretrain、prompt、example三者条件概率的组合,三者皆对于最终概率有影响


四、ICL要点

① 语言模型的规模

语言模型需要达到一定的规模

② 提示词prompt中提供的examples数量和顺序

给出的示例样本的数量和顺序也会影响模型效果的好坏

③ 提示词prompt的形式(format)

提示词的格式也十分重要,好的模型会根据你给出的格式回答你的问题


五、fine-tune VS ICL

相关文章:

  • ffmpeg-将多个视频切片成一个新的视频
  • 智能化集成管理系统的核心特点与发展趋势
  • 26考研——树与二叉树_树与二叉树的应用(5)
  • redux ,react-redux,redux-toolkit 简单总结
  • C# 多标签浏览器 谷歌内核Csharp
  • Vue中使用JsonView进行JSON数据展示
  • element-ui messageBox 组件源码分享
  • Vue.js 完全指南:从入门到精通
  • 关于deepin上WPS读取windows上的docx文件
  • centos 7 LVM管理命令
  • Vue学习笔记集--pnpm包管理器
  • 数据库学习记录
  • RocketMQ如何保证全链路消息不丢失?
  • docker容器制作和上传
  • Maven插件学习(二)——测试插件maven-surefire-pluigin
  • Linux的一些常见指令
  • 如何查看window电脑的GPU信息
  • docker部署onlyoffice(windows版)
  • Android系统的安全问题 - Android的启动时验证
  • WebGPU 全面解析:下一代 Web 图形与计算 API 的崛起
  • 网站开发公司职位/海南seo快速排名优化多少钱
  • 达州建设局网站/网站推广优化方式
  • 珠海建设企业网站的公司/网站seo教程
  • 2015年做哪些网站能致富/怎么打广告宣传自己的产品
  • 手机网站建设的企业/竞价代运营外包公司
  • 可以做网站的域名后缀/360搜索引擎入口