当前位置: 首页 > news >正文

AtCoder - arc086_d Shift and Decrement分析与实现

分析与思路

可以把操作流程表示成下图

以进行四次除法操作为例:

这里有一个关键点:对于每个p_i (0<= i <=x-1) ,x是除法操作的次数,如果p_i>=2,可以将2个p_i的减法操作去掉,在p_(i+1)中增加一个减法操作,这样可以用更少的减法操作次数达到同样的效果,所以最终,每个p_i (0<= i <=x-1),p_i要么是0,要么是1,p_x中保存了自底向上累计的减法,所以p_x取值任意

还可以继续简化操作,p_i (0<=i<=x-1)如果是1的话,可以将其去除,并让p_0增加2的 i 次方,此时虽然简化了操作,但是会增加操作次数

如果现在把操作次数统计为p_0+x+p_x,这样会用更多的次数完成相同的操作,这里有一个关键点,根据上面的p_0被累加的方式,p_0的二进制表达中1的个数是真实的p_0到p_(x-1)的操作次数的和,例如p_0 = 11011010,这代表着在p_0被增加前,p_0=0 p_1=1 p_2=0 p_3=1等等

这样,操作被简化为:

第一步:先进行p_0次减法操作,这里令y=p_0

第二步:再进行x次除法操作,

第三步:最后再进行p_x次减法操作,这里令z=p_x

操作次数为:y的二进制表达中1的出现次数+x+z

然后这里有一个关键观察,y的值不会超过2^x,就算y的二进制表达每一位都是1,也比2^x小1,于是可以将a_i表示成 a_i = b_i * 2^x + c_i,其中 0<=c_i<2^x,因为这样表示之后,

如果c_i>=y 则 经过前两步的操作,a_i变成b_i

如果c_i<y,则经过前两步的操作 a_i变成b_i - 1

将所有的c_i排序,去重,则当y处于以下的某一区间时,得到的前两步操作后的结果序列是相同的

[0,c1]

[c1+1,c2]

[c2+1,c3]

... ...

[c_(t-1) + 1, c_t] 其中 t 是c_i排序去重后的数的个数

当p处于某一区间时,为让所需操作次数减少,应该让p的二进制表达中1的个数尽量少(求一个区间[a,b]中的数的二进制表达中1的数目最少的数的方法见后)

现在,思路可以是,枚举x,因为指数爆炸,x的范围是[0,60],然后枚举y,具体方式是对每个区间求二进制表达中1的个数最少的数就是这个区间的y,然后计算经过前两步操作后得到的数的序列,同时也根据k和前两步操作的次数,计算出第三步操作可以实施的次数,第三步操作其实是在整体移动这个数列
 

这里有一个关键点,用一个数组可以描述一个数列(长度为n)的形状,这个数组中的每个元素依次是:
a[1]-a[1] a[2]-a[1] a[3]-a[1] ... a[n]-a[1]

当数列的形状相同时,只要看a[1]有多少个不同的取值,就知道这个数列有多少不同的取值情况

记录每个数列的形状下,a[1]有多少个不同取值就可以

我们的算法在枚举前两步后,可以得到第三步的一个操作数量范围,这对应着某个形状下,一个a[1]的取值范围,a[1]的取值范围们的并集就是能取到的a[1]的值,这个并集中元素的数量就是这种形状下不同序列的数量

求区间[a,b]中二进制表达中1的数目最小的数的方法

设一个数p的二进制表达中1的数目为popcount(p) 

求(a , b]中的答案可以用这样的方法,从高位到低位一位一位对比a和b,如果该位相同,则结果的该位和该位上的值相同,如果该位不同,则说明a的该位上是0,b的该位上是1,那么让结果的该位为1,后面的所有位置置0就可以

将[a,b]转化为(a-1,b]使用上述算法即可,但是有一个特殊情况,如果[a,b]中a是0,那么不能用上面的方法,应该直接返回结果0

合并区间的方法

记每个区间[l,r]

将区间按照左端点大小进行排序,记录当前已经处理到的位置的下一个位置为L,

分类讨论:如果一个区间的右端点小于L,那么不处理这个区间,否则,如果这个区间的左端点小于等于L,则区间带来的贡献是r-L+1,之后L=r+1,如果这个区间的左端点大于L,则区间带来的贡献是r-l+1,之后L=r+1

实现中的注意点

如果1<<60,会导致溢出,要写成1LL<<60

可以用map<vector<ll>,ll> 来表示某一种形状的序号,用tot表示当前形状的总数,如果当前形状的序号是0,那么当前形状的序号被编为tot+1

复杂度分析略

#include<bits/stdc++.h>
using namespace std;

#define ll long long


const ll maxn=200+5,mod=1000000007;
ll power[maxn],a[maxn],b[maxn],c[maxn],fnal[maxn],c1[maxn];
ll k,n,tot;

map<vector<ll>,ll> mp;

vector<pair<ll,ll>> range[maxn*100];

ll find_minpopcount(ll x,ll y){
    if(x==-1) return 0;

    ll ans=0;
    for(ll i=60;i>=0;i--){
        if((x&(1LL<<i))==0 && (y&(1LL<<i))){
            ans+=(1LL<<i);
            break;
        }
        if(x&(1LL<<i)) ans+=(1LL<<i);
    }
    return ans;
}

int main()
{
    ios::sync_with_stdio(0);cin.tie(0);

    //预处理2的x次方
    power[0]=1;
    for(ll i=1;i<=60;i++) power[i]=power[i-1]*2;
    //cout<<power[59]<<"\n";
    //cout<<power[60]<<"\n";
    //cout<<find_minpopcount(4,6)<<"\n";

    cin>>n>>k;
    for(ll i=1;i<=n;i++) cin>>a[i];

    for(ll x=0;x<=60;x++){
        for(ll i=1;i<=n;i++){
            b[i]=a[i]/power[x];
            c[i]=a[i]%power[x];
            c1[i]=c[i];
        }
        stable_sort(c1+1,c1+1+n);
        ll t=unique(c1+1,c1+1+n)-(c1+1);
        c1[0]=-1;
        for(ll i=1;i<=t;i++){
            ll y=find_minpopcount(c1[i-1],c1[i]);
            ll cnt=__builtin_popcountll(y);
            ll flag=1;
            for(ll j=1;j<=n;j++){
                fnal[j]=b[j];
                if(c[j]<y) fnal[j]--;
                if(fnal[j]<0) {
                    flag=0;break;
                }
            }
            if(flag==0) continue;
            ll z=k-x-cnt;
            if(z<0) {
                continue;
            }
            /*
            cout<<"发现合法结果:"<<"\n";
            printf("x=%d cnt=%d\n",x,cnt);
            for(ll i=1;i<=n;i++) cout<<fnal[i]<<" ";
            cout<<"\n";
            */
            ll minfnal=*min_element(fnal+1,fnal+1+n);
            ll max_decrease_times=min(minfnal,z);
            pair<ll,ll> p={max(fnal[1]-max_decrease_times,0LL),fnal[1]};
            //求差分模式
            vector<ll> vec;
            for(ll j=1;j<=n;j++){
                vec.push_back(fnal[j]-fnal[1]);
            }
            if(mp[vec]==0) {
                mp[vec]=++tot;
            }
            range[mp[vec]].push_back(p);
        }
    }

    ll ans=0;
    for(ll i=1;i<=tot;i++){
        //printf("第%lld种差分模式:\n",i);
        stable_sort(range[i].begin(),range[i].end());
        ll L=0;
        for(ll j=0;j<range[i].size();j++){
            pair<ll,ll> tmp=range[i][j];
            ll l=tmp.first,r=tmp.second;
            //printf("区间:[%lld , %lld]\n",l,r);
            if(r<L) continue;
            if(l<=L) ans=(ans+(r-L+1))%mod;
            else ans=(ans+(r-l+1))%mod;
            L=r+1;
        }
    }
    cout<<(ans+mod)%mod<<"\n";
    return 0;
}

相关文章:

  • Python 3.13.2安装教程(安装包)Python 3.13.2 快速安装指南
  • Elasticsearch快速上手与深度进阶:一站式实战教程
  • 区块链技术在供应链管理中的应用与创新
  • istio 介绍-01-一个用于连接、管理和保护微服务的开放平台 概览
  • 如何在MCU工程中启用HardFault硬错误中断
  • AI提示词优化方法
  • Redis项目:缓存
  • OpenHarmony 开源鸿蒙北向开发——hdc工具安装
  • 大模型——让Word插上AI的翅膀:如何把DeepSeek装进Word
  • 右键添加:新建HTML模板文件
  • Form表单的三种提交和http请求的三种传参方式,以及Servlet里的取取参方式
  • 浅谈跨平台框架的演变(H5混合开发->RN->Flutter)
  • 温度(Temperature)在大模型输出中的作用与底层原理
  • epoll成员函数介绍
  • 伯努利分布和二项分布学习笔记
  • 线程的概念
  • 跟我学C++中级篇——std::not_fn
  • 消息队列MQ
  • 【初探数据结构】二叉树的顺序结构——堆的实现详解(上下调整算法的时间复杂度分析)
  • 使用位置控件
  • 佩斯科夫:俄会考虑30天停火提议,但试图对俄施压无用
  • 长沙潮宗街内“金丝楠木老屋文旅博物馆”起火:明火已扑灭,无伤亡
  • 马云再次现身阿里打卡创业公寓“湖畔小屋”,鼓励员工坚持创业精神
  • 遇冰雹天气,西安机场新航站楼成“水帘洞”
  • 上海加力提速推进优化营商环境,明确“十大攻坚突破任务”
  • 波音公司计划于2027年交付新版“空军一号”飞机