P10045 [CCPC 2023 北京市赛] 线段树
Description
给定序列 a = ( a 1 , a 2 , ⋯ , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,⋯,an),有 m m m 个操作分两种:
- add ( l , r , x ) \operatorname{add}(l,r,x) add(l,r,x):对每个 i ∈ [ l , r ] i\in[l,r] i∈[l,r] 执行 a i ← a i + x a_i\gets a_i+x ai←ai+x.
- query ( l , r ) \operatorname{query}(l,r) query(l,r):求 ( ∏ i = l r a i ) m o d 2 20 (\prod\limits_{i=l}^r a_i) \bmod 2^{20} (i=l∏rai)mod220.
Limitations
1
≤
n
,
m
≤
2
×
1
0
5
1 \le n,m \le 2\times 10^5
1≤n,m≤2×105
1
≤
l
≤
r
≤
n
1 \le l \le r \le n
1≤l≤r≤n
1
≤
a
<
2
20
1 \le a < 2^{20}
1≤a<220,且为奇数.
0
≤
x
<
2
20
0 \le x < 2^{20}
0≤x<220,且为偶数.
4
s
,
1
GB
4\text{s},1\text{GB}
4s,1GB
Solution
使用线段树,每个点维护多项式
∏
i
=
l
r
(
a
i
+
x
)
\prod\limits_{i=l}^r(a_i+x)
i=l∏r(ai+x),不难发现只用维护
x
0
∼
x
19
x_0 \sim x_{19}
x0∼x19 项.
不妨设展开后
x
i
x^i
xi 项系数为
f
i
f_i
fi.
考虑区间加
k
k
k,由于
k
k
k 为偶数,可以枚举贡献,得到:
f
i
′
=
∑
i
=
0
19
(
k
j
×
f
i
+
j
×
(
i
+
j
j
)
)
f^{\prime}_i=\sum\limits_{i=0}^{19}(k^j\times f_{i+j}\times \binom{i+j}{j})
fi′=i=0∑19(kj×fi+j×(ji+j)).
时间复杂度
O
(
c
2
n
log
n
)
O(c^2n\log n)
O(c2nlogn),其中
c
=
20
c=20
c=20 为项数.
用 &
代替 %
可显著加快速度.
Code
3.47 KB , 3.71 s , 46.03 MB (in total, C++20 with O2) 3.47\text{KB},3.71\text{s},46.03\text{MB}\;\texttt{(in total, C++20 with O2)} 3.47KB,3.71s,46.03MB(in total, C++20 with O2)
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
constexpr int mask = 1048575, L = 20;
namespace poly {
array<array<int, L + 1>, L + 1> C;
struct Poly {
vector<int> p;
inline Poly() {}
inline Poly(int val) : p(2) { p[0] = val; p[1] = 1; }
inline void resize(int n) { p.resize(n); }
inline int size() const { return p.size(); }
inline int& operator[](int i) { return p[i]; }
inline int operator[](int i) const { return p[i]; }
};
Poly operator*(const Poly& a, const Poly& b) {
const int n = a.size(), m = b.size();
Poly c; c.resize(min(n + m - 1, L));
for (int i = 0; i < n; i++)
for (int j = 0; j < m && i + j < L; j++)
c[i + j] = (c[i + j] + 1LL * a[i] * b[j]) & mask;
return c;
}
Poly operator+(const Poly& a, int k) {
const int l = a.size();
Poly r; r.resize(l);
for (int i = 0; i < l; i++) {
for (int j = 0, pw = 1; i + j < l; j++) {
r[i] = (((1LL * pw * a[i + j]) & mask) * C[i + j][j] + r[i]) & mask;
pw = (1LL * pw * k) & mask;
}
}
return r;
}
inline void init() {
for (int i = 0; i <= L; i++) {
C[i][0] = 1;
for (int j = 1; j <= i; j++)
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) & mask;
}
}
}
namespace seg_tree {
using poly::Poly;
struct Node {
int l, r, tag;
Poly poly;
};
inline int ls(int u) { return 2 * u + 1; }
inline int rs(int u) { return 2 * u + 2; }
struct SegTree {
vector<Node> tr;
SegTree() {}
SegTree(const vector<int>& a) {
const int n = a.size();
tr.resize(n << 2);
build(0, 0, n - 1, a);
}
inline void pushup(int u) {
tr[u].poly = tr[ls(u)].poly * tr[rs(u)].poly;
}
inline void apply(int u, int k) {
tr[u].tag = (tr[u].tag + k) & mask;
tr[u].poly = tr[u].poly + k;
}
inline void pushdown(int u) {
if (!tr[u].tag) return;
apply(ls(u), tr[u].tag), apply(rs(u), tr[u].tag);
tr[u].tag = 0;
}
inline void build(int u, int l, int r, const vector<int>& a) {
tr[u].l = l, tr[u].r = r;
if (l == r) {
tr[u].poly = a[l];
return;
}
const int mid = (l + r) >> 1;
build(ls(u), l, mid, a), build(rs(u), mid + 1, r, a);
pushup(u);
}
inline void add(int u, int l, int r, int k) {
if (l <= tr[u].l && tr[u].r <= r) return apply(u, k);
pushdown(u);
const int mid = (tr[u].l + tr[u].r) >> 1;
if (l <= mid) add(ls(u), l, r, k);
if (r > mid) add(rs(u), l, r, k);
pushup(u);
}
inline int query(int u, int l, int r) {
if (l <= tr[u].l && tr[u].r <= r) return tr[u].poly[0];
pushdown(u);
const int mid = (tr[u].l + tr[u].r) >> 1;
int res = 1;
if (l <= mid) res = (res * query(ls(u), l, r)) & mask;
if (r > mid) res = (res * query(rs(u), l, r)) & mask;
return res;
}
};
}
using poly::init;
using seg_tree::SegTree;
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n, m;
scanf("%d %d", &n, &m);
vector<int> a(n);
for (int i = 0; i < n; i++) scanf("%d", &a[i]);
init();
SegTree sgt(a);
for (int i = 0, op, l, r, x; i < m; i++) {
scanf("%d %d %d", &op, &l, &r), l--, r--;
if (op == 1) {
scanf("%d", &x);
sgt.add(0, l, r, x);
}
else printf("%d\n", sgt.query(0, l, r));
}
return 0;
}