当前位置: 首页 > news >正文

场景题:如何设计一个抢红包随机算法

面试官:咱来写个算法题吧

设计一个抢红包的随机算法,比如一个人在群里发了100块钱的红包,群里有10个人一起来抢红包,每人抢到的金额随机分配。

1.所有人抢到的金额之和要等于红包金额,不能多也不能少。

2.每个人至少抢到1分钱。

3.最佳手气不超过红包总金额的90%

解题思路1:随机分配法

  • 钱的单位转换为分,每次在[1, leaveMoney]这个区间内随机一个值,记为r;
  • 计算一下剩余金额leaveMoney-r,剩余金额(单位:分)必须大于剩余人数,不然后面的人无法完成分配,例如10个人,有1个人抢了红包,剩余的money至少还需要9分钱,不然剩余的9人无法分;
  • 按照顺序随机n-1次,最后剩下的金额可以直接当做最后一个红包,不需要随机;

解题代码:

 public static List<Double> generate(double totalMoney, int people) {
        // 转换为分处理避免浮点误差
        double totalCents = Math.round(totalMoney * 100);
        double maxLimit = (totalCents * 0.9); // 总金额的90%
        double leaveMoney = totalCents;
        List<Double> result = new ArrayList<>();
        //判断钱不够分,不处理
        if ((int)totalCents < people) {
            return result;
        }
        Random random = new Random();

        //每次生成随机数
        int n = people - 1;
        while (n > 0) {
            //随机数在[1, min(maxLimit, leaveMoney)]之间,单位是:分
            double min = Math.min(leaveMoney, maxLimit);
            double allocResult = 1 + random.nextInt((int)min);
            //判断这次分配后,后续的总金额仍然可分,且不超过90%总金额
            if (allocResult > maxLimit || (leaveMoney - allocResult) < n) {
                continue;
            }
            leaveMoney -= allocResult;
            n--;
            result.add(allocResult / 100.0);
        }
        result.add(leaveMoney / 100.0);
        return result;
    }

以下是多次运行的结果:

[37.77, 50.76, 1.89, 7.89, 0.26, 0.24, 0.25, 0.78, 0.06, 0.1]
[89.38, 2.45, 3.5, 4.43, 0.03, 0.08, 0.06, 0.04, 0.01, 0.02]
[53.51, 40.86, 5.48, 0.04, 0.06, 0.01, 0.01, 0.01, 0.01, 0.01]
[42.71, 0.27, 38.99, 4.5, 4.02, 4.58, 2.97, 0.84, 0.21, 0.91]

通过多次运行的结果,可以看到越早抢红包的人,抢到的金额越大,所以题目还可以变形

要求红包金额分布均衡

面试官:继续改进红包生成算法,要求:

1.要保证红包拆分的金额尽可能分布均衡,不要出现两极分化太严重的情况。

解题思路2:二倍均值法

二倍均值法:假设剩余红包金额为m元,剩余人数为n,那么有如下公式:

每次抢到的金额 = 随机区间 [0.01,m /n × 2 - 0.01]元

这个公式,保证了每次随机金额的平均值是相等的,不会因为抢红包的先后顺序而造成不公平。

举个例子如下:

假设有5个人,红包总额100元。100÷5×2 = 40,所以第1个人抢到的金额随机范围是[0.01,39.99]元,在正常情况下,平均可以抢到20元。

假设第1个人随机抢到了20元,那么剩余金额是80元。80÷4×2 = 40,所以第2个人抢到的金额的随机范围同样是[0.01,39.99]元,在正常的情况下,还是平均可以抢到20元。假设第2个人随机抢到了20元,那么剩余金额是60元。60÷3×2 = 40,所以第3个人抢到的金额的随机范围同样是[0.01,39.99]元,平均可以抢到20元。以此类推,每一次抢到金额随机范围的均值是相等的。

解题代码:

public static List<Double> allocateRedEnvelop(double totalMoney, int people) {
        // 转换为分处理避免浮点误差
        double totalCents = Math.round(totalMoney * 100);
        double maxLimit = (totalCents * 0.9); // 总金额的90%
        Random random = new Random();
        double leaveMoney = totalCents;
        List<Double> result = new ArrayList<>();
        int n = people;
        //注意是大于1,最后1个人领取剩余的钱
        while (n > 1) {
            //生成随机金额的范围是[1, leaveMoney / n * 2 - 1], 注意nextInt方法生成结果范围是左闭右开的
            double allocatMoney = 1 + random.nextInt((int)leaveMoney / n * 2 - 1);
            result.add(allocatMoney / 100.0);
            n--;
            leaveMoney -= allocatMoney;
        }
        result.add(leaveMoney / 100.0);
        return result;
    }

生成结果测试如下,结果值比较随机了,领取的红包金额和先后顺序无关了

[8.58, 4.56, 20.88, 13.83, 7.6, 3.94, 10.87, 8.66, 20.92, 0.16]
[3.31, 2.08, 15.99, 16.79, 13.13, 0.61, 17.38, 10.93, 4.93, 14.85]
[0.24, 21.86, 15.57, 16.86, 3.45, 3.18, 5.48, 13.01, 6.76, 13.59]

解题思路3:线段切割法

考虑一种新的解法,把红包总金额想象成一条很长的线段,而每个人抢到的金额就是这条主线段上的某个子线段,如下图:

在这里插入图片描述

  • 假设有N个人一起抢红包,红包总金额为M,就需要确定N-1个切割点;

  • 切割点的随机范围是(1,M),所有切割点确认后,子线段长度也就确定了

  • 如果随机切割点出现重复,则重新生成切割点

解题代码如下:

    /**
     * 线段切割法
     */
    public static List<Double> allocateRedEnvelopNew(double totalMoney, int people) {
        // 转换为分处理避免浮点误差
        double totalCents = Math.round(totalMoney * 100);
        double maxLimit = (totalCents * 0.9); // 总金额的90%
        Random random = new Random();
        double leaveMoney = totalCents;
        List<Double> result = new ArrayList<>();
        Set<Integer> pointCutSet = new HashSet<>();
        int n = people;
        while (pointCutSet.size() < people - 1) {
            //生成n - 1个切割点,随机点取值范围是[1, totalCents]
            pointCutSet.add(random.nextInt((int) totalCents) + 1);
        }
        //接着生成对应子线段的钱数
        Integer[] points = pointCutSet.toArray(new Integer[0]);
        Arrays.sort(points);
        result.add(points[0] / 100.0);
        //子线段+ 最后那段的长度 = totalCents,注意上一步是已经加了points[0],result中的所有元素和累加后的结果一定是totalCents,
        for (int i = 1; i < points.length; i++) {
            result.add((points[i] - points[i - 1]) / 100.0);
        }
        result.add((totalCents - points[points.length - 1]) / 100.0);
        return result;
    }

最后跑几次看看生成的随机效果,可以看到手气最佳的有到37块钱的,相比较二倍均值法,该方法手气最佳获取的金额可能更高

[20.24, 3.9, 7.63, 9.62, 15.41, 2.32, 0.21, 24.94, 9.66, 6.07]
[8.64, 33.55, 3.76, 15.35, 4.41, 9.85, 4.81, 15.9, 2.71, 1.02]
[11.31, 13.32, 16.53, 5.91, 8.69, 17.29, 11.09, 7.62, 7.14, 1.1]
[21.34, 8.24, 1.9, 7.98, 0.49, 0.32, 13.75, 37.27, 0.03, 8.68]

以上就是关于红包随机算法的所有解题方法了,面试中如果遇到考这道算法题,需要问清楚红包随机的情况,有没有要求分布均衡。

如果觉得对面试有帮助的话,记得给文章点赞哦~

相关文章:

  • 解析漏洞总结
  • Java 24新特性概述
  • 【初学者】Python语言中有没有指针类型?
  • 夯实 kafka 系列|第一章:初识 kafka
  • 模型(分类模型、回归模型、聚类模型)的评分指标
  • dns实现主服务器
  • leetcode hot100(五)
  • 【实用部署教程】olmOCR智能PDF文本提取系统:从安装到可视化界面实现
  • 企业年度经营计划制定与管理方法论(124页PPT)(文末有下载方式)
  • CSS Grid 布局
  • JVM OOM问题如何排查和解决
  • 面试提问:如何判断 Hive 表是内部表还是外部表?
  • MySQL 入门大全:运算符
  • 基于Selenium Grid的分布式测试架构设计与深度实践
  • springboot444-基于Vue的网络小说交流平台(源码+数据库+纯前后端分离+部署讲解等)
  • 【初学者】请介绍一下线性与非线性的区别?
  • Unity—从入门到精通(第一天)
  • 详细解析格式化消息框的代码
  • defineAsyncComponent和一般的import有什么区别
  • 微前端 qiankun vite vue3
  • 张汝伦:康德和种族主义
  • 全国人大常委会今年将初次审议检察公益诉讼法
  • 学者的“好运气”:读本尼迪克特·安德森《椰壳碗外的人生》
  • 6连败后再战萨巴伦卡,郑钦文期待打出更稳定发挥
  • 央行等印发《关于金融支持广州南沙深化面向世界的粤港澳全面合作的意见》
  • 行知读书会|换一个角度看见社会