当前位置: 首页 > news >正文

穷举vs暴搜vs深搜vs回溯vs剪枝刷题 + 总结

文章目录

  • 全排列
    • 题解
    • 代码
  • 子集
    • 题解
    • 代码
  • 总结

全排列

题目链接
在这里插入图片描述

题解

1. 画一颗决策树
2. 全局变量:
int[ ][ ] ret:用于存结果的二维数组
int[ ] path:用于存每次路径的答案
bool[ ] check:判断这个数是否已经用过,用于剪枝,剪掉重复的,比如不可能出现1 1 2,就把第二个1剪掉了
3. 设计dfs函数:只需要关心某个节点在干什么即可,其实这题关心某一条路径就可以写出dfs函数
4. 回溯:
1、把path的最后一个元素干掉
2、把最后这个元素的bool改为false(修改check数组)
剪枝:
1、bool[ ] check:一直在做剪枝,保证数字不重复
递归出口:
1、到达叶子节点的path的长度和nums中一个元素的长度相同(遇到叶子节点的时候直接添加结果)

在这里插入图片描述

代码

class Solution 
{
public:
    bool check[7]; // 检查是否可以剪枝
    vector<vector<int>> ret; // 记录每次的路径
    vector<int> path; // 路径
    vector<vector<int>> permute(vector<int>& nums) 
    {
       dfs(nums);
       return ret;
    }
    
    // dfs只需要关心每一条路径在干什么
    void dfs(vector<int> nums)
    {
        if(nums.size() == path.size())
        {
            ret.push_back(path);
            return;
        }

        for(int i = 0;i < nums.size();i++)
        {
            if(check[i] == false)
            {
                path.push_back(nums[i]);
                check[i] = true;
                dfs(nums);
                // 回溯->恢复现场
                path.pop_back();
                check[i] = false;
            }
        }
    }
};

子集

题目链接
在这里插入图片描述

题解

1. 决策树的画法是:选还是不选
2. 全局变量:path记录每次的路径,ret记录所有路径3
3. dfs:函数头需要nums和i参数,i参数记录每次选的位置,总共3个位置
选:path += nums[i],dfs去下一层,然后再恢复现场
不选:dfs直接去下一层
4. 细节处理:
剪枝:没有剪枝
回溯:选的时候需要恢复现场
递归出口:i == nums.size(),到叶子节点的下一层之后,把路径给ret,再返回

在这里插入图片描述
1. 决策树的画法:第一层是0个,第二层是1个,第三层是2个,第四层是3个,以此类推
2. 全局变量:path记录路径,ret记录所有路径的结果
3. dfs:函数头需要参数nums和pos,pos用于标记哪个位置是否已经使用过了
4. 进入dfs函数后就应该把路径加入到ret中,第一次是空路径,每次进来都是一个路径
5. 细节处理:
回溯:每次dfs完进行回溯
剪枝:不需要进行剪枝,for已经处理好了,i = pos就记录了上次的pos位置
递归出口:不需要递归出口,函数结束了就是递归出口

在这里插入图片描述

代码

class Solution 
{
public:
    // 解法一:
    vector<vector<int>> ret;
    vector<int> path; 
    vector<vector<int>> subsets(vector<int>& nums) 
    {
        dfs(nums,0);
        return ret;
    } 

    void dfs(vector<int> nums,int i)
    {
        if(i == nums.size())
        {
            ret.push_back(path);
            return;
        }

        // 怎么区分选或者是不选->下面

        // 不选
        dfs(nums,i+1);          

        // 选
        path.push_back(nums[i]);
        dfs(nums,i+1);
        // 回溯->恢复现场
        path.pop_back();
    }
};

class Solution 
{
public:
    // 解法二:
    vector<vector<int>> ret;
    vector<int> path; 
    vector<vector<int>> subsets(vector<int>& nums) 
    {
        dfs(nums,0);
        return ret;
    } 

    void dfs(vector<int> nums,int i)
    {
       ret.push_back(path);
       for(int j = i;j < nums.size();j++)
       {
            path.push_back(nums[j]);
            dfs(nums,j+1);
            path.pop_back();// 恢复现场
       }
    }
};

总结

dfs就分为五步:
1. 画决策树:只要正确画出决策树就能写出正确的代码
2. 全局变量:写出ret记录所有路径,path记录每次的路径,check标记是否使用过该位置
3. dfs:函数头,根据决策树考虑使用几个参数,只关心某个节点在干什么的情况或者是某一条路径的情况
4. dfs的函数体:根据决策树设计分析函数题如何写
5. 细节处理:回溯->恢复现场,剪枝->把不要的情况剪掉,递归出口->一般是根据叶子节点的情况得到的,比如 i == nums.size(),i走到数组的最后一个位置的下一个位置并且把路径加入到ret中就返回


相关文章:

  • 第5课 树莓派的Python IDE—Thonny
  • Gin(后端)和 Vue3(前端)中实现 Server-Sent Events(SSE)推送
  • DeepSeek + Excel:数据处理专家 具体步骤
  • 蓝桥杯备赛-二分-技能升级
  • C语言输入与输出:从零掌握数据的“对话”
  • STC89C52单片机学习——第20节: [8-2]串口向电脑发送数据电脑通过串口控制LED
  • MyBatis源码分析の配置文件解析
  • 创建postgis数据库
  • 【matlab例程】三维下的TDOA定位和EKF轨迹滤波例程,TDOA的锚点数量可自定义(订阅专栏后可获得完整代码)
  • 每日一题---腐烂的苹果(广度优先搜索)
  • Java常见的几种内存溢出及解决方法
  • MATLAB中events函数用法
  • 函数的引用/函数的默认参数/函数的占位参数/函数重载
  • 面试vue2开发时怎么加载编译速度(webpack)
  • 用C++新建快捷方式
  • 第5章 构造、析构、拷贝语义学3:对象复制语意学
  • 高频面试题(含笔试高频算法整理)基本总结回顾24
  • 【ElasticSearch】学习笔记
  • 零基础上手Python数据分析 (3):Python核心语法快速入门 (下) - 程序流程控制、函数与模块
  • 用ST7789屏幕导致负片(反色)的问题
  • 格桑花盛放上海,萨迦艺术团襄阳公园跳起藏族舞
  • “五一”假期首日迎出游高峰:火车站人流“堪比春运”,热门景区门票预订量同比增三成
  • 五一假期,这些短剧值得一刷
  • 金砖国家外长会晤主席声明(摘要)
  • 秦洪看盘|资金切换主线,重构市场风格
  • 澎湃回声丨23岁小伙“被精神病8年”续:今日将被移出“重精”管理系统