当前位置: 首页 > news >正文

聚划算!三个模型对比预测!CNN-GRU、GRU、CNN三模型多变量时序光伏功率预测

聚划算!三个模型对比预测!CNN-GRU、GRU、CNN三模型多变量时序光伏功率预测

目录

    • 聚划算!三个模型对比预测!CNN-GRU、GRU、CNN三模型多变量时序光伏功率预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

CNN-GRU、GRU、CNN三模型多变量时序光伏功率预测 (Matlab2020b 多输入单输出)

1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!

2.CNN-GRU、GRU、CNN三模型多变量时序光伏功率预测 (Matlab2023b 多输入单输出),考虑历史特征的影响。

3.运行环境要求MATLAB版本为2020b及其以上。

4.评价指标包括:R2、MAE、MSE、RPD、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。

代码中文注释清晰,质量极高,赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白
在这里插入图片描述

程序设计

  • 完整代码私信回复J聚划算!三个经典模型光伏功率预测!CNN-GRU、GRU、CNN三模型多变量时序光伏功率预测












%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
result = xlsread('数据集.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数
kim = 2;                       % 延时步长(前面多行历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
nim = size(result, 2) - 1;     % 原始数据的特征是数目

%%  划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1 + zim, 1: end - 1)', 1, ...
        (kim + zim) * nim), result(i + kim + zim - 1, end)];
end

%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征长度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, -1, 1);%将训练集和测试集的数据调整到01之间
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, -1, 1);% 对测试集数据做归一化
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
p_train =  double(reshape(p_train, f_, 1, 1, M));
p_test  =  double(reshape(p_test , f_, 1, 1, N));
t_train =  double(t_train)';
t_test  =  double(t_test )';

%%  数据格式转换
for i = 1 : M
    Lp_train{i, 1} = p_train(:, :, 1, i);
end

for i = 1 : N
    Lp_test{i, 1}  = p_test( :, :, 1, i);
end





参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

  • 基于威胁的安全测试值得关注,RASP将大放异彩
  • 社交软件频繁更新,UI 设计在其中扮演什么角色?
  • ffmpeg + opencv 打静态库编译到可执行文件中
  • 布谷直播系统源码开发实战:从架构设计到性能优化
  • DeepSeek-R1思路训练多模态大模型-Vision-R1开源及实现方法思路
  • OpenHarmony5.0分布式系统源码实现分析—软总线
  • 详细解析 ListView_GetEditControl()
  • UE5与U3D引擎对比分析
  • c-线程创建,同步互斥,互斥锁;
  • NLP技术介绍
  • 定义未来!广东天谱科技集团有限公司荣获“GAS科创奖-产品创新奖”!
  • linux 命令 head
  • 仿TikTok推荐系统开发与部署
  • 家庭影音娱乐,补上“极简主义”最后一块拼图
  • 网络通信(传输层协议:TCP/IP ,UDP):
  • C++中使用try-catch为什么会有额外的性能开销
  • VMware 17+Win10 22H2全栈配置指南|UEFI优化+GPU直通实战
  • UI 设计中,如何找到视觉与功能的完美平衡点?
  • macOS 安装 Homebrew、nvm 及安装切换 node 版本
  • 使用 Chrome Flags 设置(适用于 HTTP 站点开发)
  • 公司网站方案/seo网站诊断分析报告
  • 找做废薄膜网站/房地产网站建设
  • 佛山做网站建设公司/uc推广登录入口
  • 青浦门户网站/西安优化排名推广
  • 合肥网站建设市场分析/磁力链
  • 封装系统如何做自己的网站/爱站查询