Python实现的用于处理协作车辆进入路口遮挡自车路径的情况
下面是一个使用Python实现的示例代码,用于处理协作车辆进入路口遮挡自车路径的情况。我们将分为几个步骤来完成这个任务:
- 离线混合A*路径规划:使用混合A*算法规划自车从起点到终点的初始路径。
- 障碍物处理:根据他车的停车点和车辆长宽确定障碍物的位置和大小。
- 决策模型:判断是否需要进行路径重规划。
- 在线路径重规划:如果需要重规划,使用
MoveToXY
方法重新规划路径。
import heapq
import numpy as np
import math
# 定义节点类
class Node:
def __init__(self, x, y, theta, g=0, h=0, parent=None):
self.x = x
self.y = y
self.theta = theta
self.g = g
self.h = h
self.f = g + h
self.parent = parent
def __lt__(self, other):
return self.f < other.f
# 定义混合A*路径规划器
def hybrid_astar(start, goal, obstacles, vehicle_length, vehicle_width, grid_resolution=0.1, theta_resolution=math.radians(10)):
open_list = []
closed_set = set()
start_node = Node(start[0], start[1], start[2])
heapq.heappush(open_list, start_node)
while open_list:
current_node = heapq.heappop(open_list)
if (math.sqrt((current_node.x - goal[0])**2 + (current_node.y - goal[1])**2) < grid_resolution and
abs(current_node.theta - goal[2]) < theta_resolution):
path = []
while current_node:
path.append((current_node.x, current_node.y, current_node.theta))
current_node = current_node.parent
return path[::-1]
closed_set.add((current_node.x, current_node.y, current_node.theta))
# 生成子节点
for steering_angle in [-math.radians(30), 0, math.radians(30)]:
new_x = current_node.x + math.cos(current_node.theta) * grid_resolution
new_y = current_node.y + math.sin(current_node.theta) * grid_resolution
new_theta = current_node.theta + steering_angle
new_node = Node(new_x, new_y, new_theta,
g=current_node.g + grid_resolution,
h=math.sqrt((new_x - goal[0])**2 + (new_y - goal[1])**2),
parent=current_node)
if (new_x, new_y, new_theta) in closed_set:
continue
# 检查碰撞
if not is_collision(new_node, obstacles, vehicle_length, vehicle_width):
heapq.heappush(open_list, new_node)
return None
# 检查碰撞
def is_collision(node, obstacles, vehicle_length, vehicle_width):
for obstacle in obstacles:
ox, oy, ol, ow = obstacle
# 简单的矩形碰撞检测
min_x = ox - ol / 2
max_x = ox + ol / 2
min_y = oy - ow / 2
max_y = oy + ow / 2
if (min_x < node.x < max_x) and (min_y < node.y < max_y):
return True
return False
# 决策模型:判断是否需要重规划路径
def decision_model(path, obstacles):
for point in path:
for obstacle in obstacles:
ox, oy, ol, ow = obstacle
min_x = ox - ol / 2
max_x = ox + ol / 2
min_y = oy - ow / 2
max_y = oy + ow / 2
if (min_x < point[0] < max_x) and (min_y < point[1] < max_y):
return True
return False
# 在线路径重规划(简化的MoveToXY)
def online_replanning(start, goal, obstacles, vehicle_length, vehicle_width):
return hybrid_astar(start, goal, obstacles, vehicle_length, vehicle_width)
# 示例参数
start = (0, 0, 0) # 起点 (x, y, theta)
goal = (10, 10, 0) # 终点 (x, y, theta)
obstacles = [(5, 5, 2, 2)] # 障碍物 (x, y, length, width)
vehicle_length = 4
vehicle_width = 2
# 离线混合A*路径规划
initial_path = hybrid_astar(start, goal, obstacles, vehicle_length, vehicle_width)
if initial_path:
print("初始路径规划成功!")
else:
print("初始路径规划失败!")
# 决策是否需要重规划
if decision_model(initial_path, obstacles):
print("需要重规划路径!")
new_path = online_replanning(start, goal, obstacles, vehicle_length, vehicle_width)
if new_path:
print("重规划路径成功!")
else:
print("重规划路径失败!")
else:
print("不需要重规划路径。")
代码说明:
- Node类:定义了路径规划中的节点,包含坐标、角度、代价等信息。
- hybrid_astar函数:实现了混合A*路径规划算法,用于离线规划初始路径。
- is_collision函数:检查节点是否与障碍物发生碰撞。
- decision_model函数:判断当前路径是否与障碍物冲突,决定是否需要重规划路径。
- online_replanning函数:调用混合A*算法进行在线路径重规划。
注意事项:
- 此代码中的混合A*算法是一个简化版本,实际应用中可能需要更复杂的实现。
MoveToXY
方法在代码中简化为再次调用混合A*算法进行路径重规划。- 碰撞检测部分使用了简单的矩形碰撞检测,实际应用中可能需要更精确的碰撞检测方法。