当前位置: 首页 > news >正文

青岛网站制作排名北京关键词优化报价

青岛网站制作排名,北京关键词优化报价,深圳 公司网站建设,南沙网站建设优化前言 关于亚马逊订单数据的探索! 次项目大家就仅当作学习使用好了 导入库 import pandas as pd from pyecharts.charts import \* from pyecharts import options as opts from pyecharts.commons.utils import JsCodePython从零基础入门到实战系统教程、源码、…

前言

关于亚马逊订单数据的探索!

次项目大家就仅当作学习使用好了

导入库

import pandas as pd
from pyecharts.charts import \*
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode

Python从零基础入门到实战系统教程、源码、视频,想要数据集的同学也可以点这里

数据处理

  • 对时间字段进行处理,转为datetime;
  • 对配送州字段进行处理,原始数据中既有州缩写也有全称,统一为全称呼;
df\_c = pd.read\_excel('C:/Users/Administrator/Desktop/市场占有率.xls')
df \= pd.read\_excel('C:/Users/Administrator/Desktop/亚马逊入驻商订单报表.xls', header=1)
df\['支付时间'\] = pd.to\_datetime(df\['支付时间'\], utc=False)# .dt.strftime('%Y-%m-%d %H:%M:%S')
df\['下单时间'\] = pd.to\_datetime(df\['下单时间'\], utc=False)# .dt.strftime('%Y-%m-%d %H:%M:%S')
df\['最早配送时间'\] = pd.to\_datetime(df\['最早配送时间'\], utc=False)
df\['最晚配送时间'\] = pd.to\_datetime(df\['最晚配送时间'\], utc=False)
df\['最早送达时间'\] = pd.to\_datetime(df\['最早送达时间'\], utc=False)
df\['最晚送达时间'\] = pd.to\_datetime(df\['最晚送达时间'\], utc=False)
c\_map \= dict()
for idx, row in df\_c.iterrows():c\_map\[row\['州名简写'\]\] = row\['美国州名英文'\].replace(u'\\xa0', u' ')c\_map\['SD'\] = 'South Dakota'
c\_map\['NM'\] = 'New Mexico'
c\_map\['SC'\] = 'South Carolina'
c\_map\['NH'\] = 'New Hampshire'
c\_map\['NJ'\] = 'New Jersey'def format\_state(state):try:c \= state.upper().replace('.', '')if c in c\_map.keys():return c\_map\[c\]elif c in \[x.upper() for x in c\_map.values()\]:return list(c\_map.values())\[\[x.upper() for x in c\_map.values()\].index(c)\]else:return Noneexcept AttributeError:return Nonedf\['配送州'\] = df\['配送州'\].map(format\_state)df.head()

各时间段订单量

早上的订单最多,好像和国内用户习惯不太一样呢~

data = df.groupby(\[df\['下单时间'\].dt.hour\])\['订单ID'\].count().reset\_index()
data\_x \= \['{}点'.format(int(i)) for i in data\['下单时间'\]\]
data\_y \= data\['订单ID'\].tolist()area\_color\_js \= """new echarts.graphic.LinearGradient(0, 0, 0, 1,\[{offset: 0, color: 'rgba(128, 255, 165)'},{offset: 1, color: 'rgba(1, 191, 236)'}\],false)
"""bg\_color\_js \= """new echarts.graphic.LinearGradient(0, 0, 0, 1,\[{offset: 0, color: 'rgba(128, 255, 165, 0.2)'},{offset: 1, color: 'rgba(1, 191, 236, 0.2)'}\],false)
"""line \= Line(init\_opts=opts.InitOpts(theme='white', width='1000px', height='500px', bg\_color=JsCode(bg\_color\_js)))
line.add\_xaxis(data\_x)
line.add\_yaxis('',data\_y,is\_smooth\=True,symbol\="circle",is\_symbol\_show\=False,linestyle\_opts\=opts.LineStyleOpts(color="#fff"),areastyle\_opts\=opts.AreaStyleOpts(color=JsCode(area\_color\_js), opacity=1),
)line.set\_series\_opts(opts.LabelOpts(is\_show\=False))
line.set\_global\_opts(xaxis\_opts\=opts.AxisOpts(boundary\_gap=False),yaxis\_opts\=opts.AxisOpts(axisline\_opts=opts.AxisLineOpts(is\_show=False),axistick\_opts\=opts.AxisTickOpts(is\_show\=False),splitline\_opts\=opts.SplitLineOpts(is\_show=True,linestyle\_opts\=opts.LineStyleOpts(color='#E0E6F1'))),tooltip\_opts\=opts.TooltipOpts(is\_show\=True, trigger='axis', axis\_pointer\_type='cross'),title\_opts\=opts.TitleOpts(title="全天各时间段订单数", pos\_left='center')
)
line.render\_notebook()

周内订单量分布

data = df.groupby(\[df\['下单时间'\].dt.weekday\_name\])\['订单ID'\].count().reset\_index()
cat\_day\_of\_week \= pd.api.types.CategoricalDtype(\['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'\], ordered\=True
)
data\['下单时间'\] = data\['下单时间'\].astype(cat\_day\_of\_week)
data \= data.sort\_values(\['下单时间'\])
data\_x \= data\['下单时间'\].tolist()
data\_y \= data\['订单ID'\].tolist()area\_color\_js \= """new echarts.graphic.LinearGradient(0, 0, 0, 1,\[{offset: 0, color: 'rgba(128, 255, 165)'},{offset: 1, color: 'rgba(1, 191, 236)'}\],false)
"""bg\_color\_js \= """new echarts.graphic.LinearGradient(0, 0, 0, 1,\[{offset: 0, color: 'rgba(128, 255, 165, 0.2)'},{offset: 1, color: 'rgba(1, 191, 236, 0.2)'}\],false)
"""line \= Line(init\_opts\=opts.InitOpts(theme\='white',width\='1000px',height\='500px',bg\_color\=JsCode(bg\_color\_js)))
line.add\_xaxis(data\_x)
line.add\_yaxis('',data\_y,is\_smooth\=True,symbol\="circle",is\_symbol\_show\=False,linestyle\_opts\=opts.LineStyleOpts(color="#fff"),areastyle\_opts\=opts.AreaStyleOpts(color=JsCode(area\_color\_js), opacity=1),
)line.set\_series\_opts(opts.LabelOpts(is\_show\=False))
line.set\_global\_opts(xaxis\_opts\=opts.AxisOpts(boundary\_gap=False),yaxis\_opts\=opts.AxisOpts(is\_scale\=True,axisline\_opts\=opts.AxisLineOpts(is\_show=False),axistick\_opts\=opts.AxisTickOpts(is\_show\=False),splitline\_opts\=opts.SplitLineOpts(is\_show=True,linestyle\_opts\=opts.LineStyleOpts(color='#E0E6F1'))
),tooltip\_opts\=opts.TooltipOpts(is\_show\=True, trigger='axis', axis\_pointer\_type='cross'),title\_opts\=opts.TitleOpts(title="一周内各天订单数", pos\_left='center')
)
line.render\_notebook()

美国各州订单

下载美国地图
import requestsGEO\_data \= requests.get(url="https://echarts.apache.org/examples/data/asset/geo/USA.json").json()area\_move \= """{Alaska: {              // 把阿拉斯加移到美国主大陆左下方left: -128,top: 25,width: 15},Hawaii: {left: -110,        // 夏威夷top: 25,width: 5},'Puerto Rico': {       // 波多黎各left: -76,top: 26,width: 2}}"""data \= df.groupby(\['配送州'\])\['订单ID'\].count().reset\_index()
data\_pair \= \[\]
for idx, row in data.iterrows():data\_pair.append((row\['配送州'\], row\['订单ID'\]))
map\_chart \= Map(init\_opts=opts.InitOpts(width='1000px', height='600px'))
map\_chart.add\_js\_funcs("""echarts.registerMap('USA', {}, {});""".format(GEO\_data, area\_move))
map\_chart.add('订单数',data\_pair\=data\_pair,maptype\='USA',is\_roam\=False,# 关闭symbol的显示is\_map\_symbol\_show=False,zoom\=1.1,label\_opts\=opts.LabelOpts(is\_show=False),)map\_chart.set\_global\_opts(legend\_opts\=opts.LegendOpts(is\_show=False),title\_opts\=opts.TitleOpts(title="美国各州订单数分布", pos\_left='center'),visualmap\_opts\=opts.VisualMapOpts(is\_show=True,is\_piecewise\=True,orient\='vertical',pos\_left\='2%',pos\_top\='65%',range\_text\=\['订单数', ''\],pieces\=\[{'min': 100},{'min': 60,'max': 100},{'min': 30,'max': 60},{'min': 10,'max': 30},{'min': 1,'max': 10}\],range\_color\=\["#CCD3D9", "#E6B6C2", "#D4587A", "#DC364C"\])
)
map\_chart.render\_notebook()

商品属性

根据商品名称关键词来判断,93%的商品都是女款

f, m = 0, 0
for i in df\['产品名称'\]:try:if i.upper().\_\_contains\_\_('WOMEN') or i.upper().\_\_contains\_\_('GIRL'):f+=1elif i.upper().\_\_contains\_\_('MEN'):m+=1else:passexcept AttributeError:passf\_p \= round(f/(f+m)\*100)
m\_p \= round(m/(f+m)\*100)
symbols \= \['path://M18.2629891,11.7131596 L6.8091608,11.7131596 C1.6685112,11.7131596 0,13.032145 0,18.6237673 L0,34.9928467 C0,38.1719847 4.28388932,38.1719847 4.28388932,34.9928467 L4.65591984,20.0216948 L5.74941883,20.0216948 L5.74941883,61.000787 C5.74941883,65.2508314 11.5891201,65.1268798 11.5891201,61.000787 L11.9611506,37.2137775 L13.1110872,37.2137775 L13.4831177,61.000787 C13.4831177,65.1268798 19.3114787,65.2508314 19.3114787,61.000787 L19.3114787,20.0216948 L20.4162301,20.0216948 L20.7882606,34.9928467 C20.7882606,38.1719847 25.0721499,38.1719847 25.0721499,34.9928467 L25.0721499,18.6237673 C25.0721499,13.032145 23.4038145,11.7131596 18.2629891,11.7131596 M12.5361629,1.11022302e-13 C15.4784742,1.11022302e-13 17.8684539,2.38997966 17.8684539,5.33237894 C17.8684539,8.27469031 15.4784742,10.66467 12.5361629,10.66467 C9.59376358,10.66467 7.20378392,8.27469031 7.20378392,5.33237894 C7.20378392,2.38997966 9.59376358,1.11022302e-13 12.5361629,1.11022302e-13','path://M28.9624207,31.5315864 L24.4142575,16.4793596 C23.5227152,13.8063773 20.8817445,11.7111088 17.0107398,11.7111088 L12.112691,11.7111088 C8.24168636,11.7111088 5.60080331,13.8064652 4.70917331,16.4793596 L0.149791395,31.5315864 C-0.786976655,34.7595013 2.9373074,35.9147532 3.9192135,32.890727 L8.72689855,19.1296485 L9.2799493,19.1296485 C9.2799493,19.1296485 2.95992025,43.7750224 2.70031069,44.6924335 C2.56498417,45.1567684 2.74553639,45.4852068 3.24205501,45.4852068 L8.704461,45.4852068 L8.704461,61.6700801 C8.704461,64.9659872 13.625035,64.9659872 13.625035,61.6700801 L13.625035,45.360657 L15.5097899,45.360657 L15.4984835,61.6700801 C15.4984835,64.9659872 20.4191451,64.9659872 20.4191451,61.6700801 L20.4191451,45.4852068 L25.8814635,45.4852068 C26.3667633,45.4852068 26.5586219,45.1567684 26.4345142,44.6924335 C26.1636859,43.7750224 19.8436568,19.1296485 19.8436568,19.1296485 L20.3966199,19.1296485 L25.2043926,32.890727 C26.1862111,35.9147532 29.9105828,34.7595013 28.9625083,31.5315864 L28.9624207,31.5315864 Z M14.5617154,0 C17.4960397,0 19.8773132,2.3898427 19.8773132,5.33453001 C19.8773132,8.27930527 17.4960397,10.66906 14.5617154,10.66906 C11.6274788,10.66906 9.24611767,8.27930527 9.24611767,5.33453001 C9.24611767,2.3898427 11.6274788,0 14.5617154,0 L14.5617154,0 Z',
\]area\_color\_js \= """new echarts.graphic.LinearGradient(0, 1, 0, 1,\[{offset: 0, color: 'rgba(128, 255, 165)'},{offset: 1, color: 'rgba(1, 191, 236)'}\],false)
"""p \= PictorialBar(init\_opts\=opts.InitOpts(theme\='white',width\='1000px',height\='800px',bg\_color\=JsCode(bg\_color\_js)))p.add\_xaxis(\[0, 1\])# 此部分数据为要显示的数值
p.add\_yaxis("",\[{"value": m\_p,"symbol": symbols\[0\],'symbolBoundingData': 100,"itemStyle": {"normal": {"color": 'rgba(105,204,230)'  # 单独控制颜色}},},{"value": f\_p,"symbol": symbols\[1\],'symbolBoundingData': 100,"itemStyle": {"normal": {"color": 'rgba(255,130,130)'  # 单独控制颜色}},}\],label\_opts\=opts.LabelOpts(is\_show\=True,position\='inside',font\_family\='Arial',font\_weight\='bolder',font\_size\=40,formatter\='{c}%'),symbol\_repeat\=False,is\_symbol\_clip\=True
)# 此部分数据用于背景,设置为100
p.add\_yaxis("",\[{"value": 100,"symbol": symbols\[0\],'symbolBoundingData': 100,"itemStyle": {"normal": {"color": 'rgba(105,204,230,0.40)'  # 单独控制颜色}},},{"value": 100,"symbol": symbols\[1\],'symbolBoundingData': 100,"itemStyle": {"normal": {"color": 'rgba(255,130,130,0.40)'  # 单独控制颜色}},}\],category\_gap\='30%',label\_opts\=opts.LabelOpts(is\_show=False),is\_symbol\_clip\=True,symbol\_repeat\=False
)p.set\_global\_opts(title\_opts\=opts.TitleOpts(title\="男款商品 VS 女款商品",subtitle\='依据订单商品名称中的关键词判断, 如“women”,“girl”等。',pos\_left\='center'),tooltip\_opts\=opts.TooltipOpts(is\_show=False),legend\_opts\=opts.LegendOpts(is\_show=False),xaxis\_opts\=opts.AxisOpts(is\_show=False),yaxis\_opts\=opts.AxisOpts(is\_show=False, max\_=100),
)p.render\_notebook()

商品属性

  • 哪个尺码的衣服买的更多?
  • 那个颜色更受欢迎?
pie = Pie(init\_opts\=opts.InitOpts(theme\='white',width\='1000px',height\='500px',bg\_color\='#F5F5F5',)
)
pie.add("",c.most\_common(10),radius\=\["30%", "50%"\],center\=\["25%", "50%"\],# rosetype="area",label\_opts=opts.LabelOpts(is\_show=True, formatter='{b}:{d}%'),itemstyle\_opts\={'normal': {'shadowColor': 'rgba(0, 0, 0, .5)',  # 阴影颜色'shadowBlur': 5,  # 阴影大小'shadowOffsetY': 5,  # Y轴方向阴影偏移'shadowOffsetX': 5,  # x轴方向阴影偏移'opacity': '0.7',}})pie.add("",cl.most\_common(10),radius\=\["30%", "50%"\],center\=\["75%", "50%"\],# rosetype="area",label\_opts=opts.LabelOpts(is\_show=True, formatter='{b}:{d}%'),itemstyle\_opts\={'normal': {'shadowColor': 'rgba(0, 0, 0, .5)',  # 阴影颜色'shadowBlur': 5,  # 阴影大小'shadowOffsetY': 5,  # Y轴方向阴影偏移'shadowOffsetX': 5,  # x轴方向阴影偏移# 'opacity': '0.7',}})
pie.set\_global\_opts(title\_opts\=\[dict(text\='商品属性',left\='center',top\='5%',textStyle\=dict(color\='#282828',fontSize\=20)),dict(text\='SIZE',left\='23%',top\='48%',textStyle\=dict(color\='#282828',fontSize\=17)),dict(text\='COLOR',left\='72%',top\='48%',textStyle\=dict(color\='#282828',fontSize\=17))\],tooltip\_opts\=opts.TooltipOpts(is\_show=False),legend\_opts\=opts.LegendOpts(is\_show=False),visualmap\_opts\=opts.VisualMapOpts(is\_show\=False,max\_\=300,range\_color\=\['rgb(1, 191, 236)', 'rgb(128, 255, 165)'\])
)
pie.render\_notebook()

词云图

from stylecloud import gen\_stylecloud
from IPython.display import Imagegen\_stylecloud(' '.join(word\_list),size\=1000,max\_words\=1000,# palette='palettable.tableau.TableauMedium\_10',icon\_name='fab fa-amazon',output\_name\='comment.png',)Image(filename\='comment.png')

Python从零基础入门到实战系统教程、源码、视频,想要数据集的同学也可以点这里

http://www.dtcms.com/a/576071.html

相关文章:

  • 网站建设与网络营销微商城模板包含哪些
  • 快刷网站单页面销售网站
  • 移动深圳网站做阿里巴巴网站 店铺装修免费吗
  • 网站建设公司人员配备新闻危机公关
  • 邢台专业做网站的地方长春建筑公司有哪些公司
  • 设计网站一般要多少钱网页制作知识点归纳
  • flash网站有哪些深圳h5网站制作
  • 怎么做有声小说网站播音员湖南商城网站建设
  • 中国做投资的网站邯郸网站只做
  • 如何自己动手做网站做网站的怎么获取客户信息
  • 如何看网站是否有做网站地图工程建设与设计期刊
  • 苏州网站建设行业手机网站设计框架
  • 竖导航网站怎么做多语言的网站
  • 网站设计怎么收费做的网站怎么发布到网上
  • 关于网站建设电话销售的话术设计制作照片
  • 长沙互联网网站建设网站建设方案前言
  • 大同网站建设推广万网买网站
  • 旅游网站页面设计模板网站广告位
  • 深圳建网站找哪家好看的公司网站
  • 在线书店网站怎么做学校机构网站建设内容
  • 哈尔滨住房城乡建设局网站首页深圳营销型网站建设费用
  • 惠州网站设计定制深圳市宝安区核酸检测点
  • 网站开发经济可行性分析怎么写企业网站建设源码 微信 手机
  • 做盗号网站企业网站的建立
  • php网站开发实用技术珠海在线网站制作公司
  • 吉安好的网站建设公司注册劳务公司流程和费用
  • 网站建设评审标准电商支付网站建设费进什么科目
  • 公司网站不备案和备案有什么区别企业网站建设费用计入哪个科目
  • 网站建设自查工作总结商品推广与营销的方式
  • 网站开发文案遵义北京网站建设