1. 系统总体架构
技术路线框架:
数据采集 → 指标构建 → 云物元模型 → 权重确定 → 质量评价 → 结果分析
2. 核心算法步骤
步骤1:评价指标体系构建
indicators = {'操作技能', '团队协作', '情景逼真度', '训练效果', '系统性能'
};
sub_indicators = {{'操作准确性', '反应速度', '程序规范性'}, {'沟通协调', '角色配合', '冲突处理'}, {'环境真实感', '设备仿真度', '情景复杂度'}, {'知识掌握度', '技能提升度', '问题解决能力'}, {'系统稳定性', '响应时效', '数据准确性'}
};
步骤2:改进云物元模型构建
classdef ImprovedCloudMatterElementpropertiesName ClassicalDomain NodeDomain ActualValue CloudParameters MembershipDegree endmethodsfunction obj = ImprovedCloudMatterElement(name, classical, node)obj.Name = name;obj.ClassicalDomain = classical;obj.NodeDomain = node;obj.CloudParameters = obj.calculateCloudParameters();endfunction params = calculateCloudParameters(obj)Ex = mean(obj.ClassicalDomain);En = (obj.ClassicalDomain(2) - obj.ClassicalDomain(1)) / 6;He = (obj.NodeDomain(2) - obj.NodeDomain(1)) / 36;params = [Ex, En, He];endfunction degree = calculateMembership(obj, actualValue)Ex = obj.CloudParameters(1);En = obj.CloudParameters(2); He = obj.CloudParameters(3);En_prime = normrnd(En, He);if En_prime ~= 0degree = exp(-(actualValue - Ex)^2 / (2 * En_prime^2));elsedegree = 0;endobj.ActualValue = actualValue;obj.MembershipDegree = degree;endend
end
步骤3:组合权重确定
function weights = combinedWeighting(data_matrix)subjective_weights = analyticHierarchyProcess();objective_weights = entropyWeightMethod(data_matrix);alpha = 0.6; beta = 0.4; weights = alpha * subjective_weights + beta * objective_weights;weights = weights / sum(weights);
endfunction weights = analyticHierarchyProcess()judgment_matrix = [1, 3, 2, 1, 2;1/3, 1, 1/2, 1/3, 1/2;1/2, 2, 1, 1/2, 1;1, 3, 2, 1, 2;1/2, 2, 1, 1/2, 1];[V, D] = eig(judgment_matrix);[~, idx] = max(diag(D));weights = V(:, idx) / sum(V(:, idx));
endfunction weights = entropyWeightMethod(data_matrix)[m, n] = size(data_matrix);normalized_data = zeros(m, n);for j = 1:nif max(data_matrix(:,j)) ~= min(data_matrix(:,j))normalized_data(:,j) = (data_matrix(:,j) - min(data_matrix(:,j))) / ...(max(data_matrix(:,j)) - min(data_matrix(:,j)));elsenormalized_data(:,j) = 0.5;endendp = normalized_data ./ sum(normalized_data, 1);p(p == 0) = 1e-10; e = -sum(p .* log(p), 1) / log(m);weights = (1 - e) / sum(1 - e);
end
3. 完整评价模型实现
classdef SimulatorTrainingQualityEvaluationpropertiesEvaluationIndicators CloudMatterElements Weights EvaluationResults TrainingData endmethodsfunction obj = SimulatorTrainingQualityEvaluation()obj = obj.initializeEvaluationSystem();endfunction obj = initializeEvaluationSystem(obj)obj.EvaluationIndicators = {'操作准确性', [0.8, 1.0], [0.6, 1.0];'反应速度', [0.7, 0.9], [0.5, 1.0]; '程序规范性', [0.9, 1.0], [0.7, 1.0];'沟通协调', [0.8, 1.0], [0.6, 1.0];'角色配合', [0.8, 1.0], [0.6, 1.0];'环境真实感', [0.7, 0.9], [0.5, 1.0];'系统稳定性', [0.9, 1.0], [0.7, 1.0];'技能提升度', [0.8, 1.0], [0.6, 1.0]};obj.CloudMatterElements = cell(size(obj.EvaluationIndicators, 1), 1);for i = 1:length(obj.CloudMatterElements)name = obj.EvaluationIndicators{i, 1};classical = obj.EvaluationIndicators{i, 2};node = obj.EvaluationIndicators{i, 3};obj.CloudMatterElements{i} = ImprovedCloudMatterElement(name, classical, node);endendfunction results = evaluateTrainingQuality(obj, training_data)[num_samples, num_indicators] = size(training_data);obj.Weights = combinedWeighting(training_data);comprehensive_scores = zeros(num_samples, 1);membership_matrix = zeros(num_samples, num_indicators);quality_levels = cell(num_samples, 1);for i = 1:num_samplessample_scores = zeros(num_indicators, 1);for j = 1:num_indicatorsmembership = obj.CloudMatterElements{j}.calculateMembership(training_data(i, j));membership_matrix(i, j) = membership;sample_scores(j) = membership * obj.Weights(j);endcomprehensive_scores(i) = sum(sample_scores);quality_levels{i} = obj.determineQualityLevel(comprehensive_scores(i));endobj.EvaluationResults.ComprehensiveScores = comprehensive_scores;obj.EvaluationResults.MembershipMatrix = membership_matrix;obj.EvaluationResults.QualityLevels = quality_levels;obj.TrainingData = training_data;results = obj.EvaluationResults;endfunction level = determineQualityLevel(obj, score)if score >= 0.9level = '优秀';elseif score >= 0.8level = '良好';elseif score >= 0.7level = '中等';elseif score >= 0.6level = '合格';elselevel = '不合格';endendfunction visualizeResults(obj)figure('Position', [100, 100, 1400, 900]);subplot(2, 3, 1);scores = obj.EvaluationResults.ComprehensiveScores;histogram(scores, 10, 'FaceColor', [0.2 0.6 0.8], 'EdgeColor', 'none');title('训练质量综合得分分布', 'FontSize', 12, 'FontWeight', 'bold');xlabel('综合得分');ylabel('频数');grid on;subplot(2, 3, 2);pie(obj.Weights, obj.EvaluationIndicators(:,1));title('评价指标权重分布', 'FontSize', 12, 'FontWeight', 'bold');subplot(2, 3, 3);levels = obj.EvaluationResults.QualityLevels;level_categories = {'优秀', '良好', '中等', '合格', '不合格'};level_counts = zeros(1, 5);for i = 1:length(levels)idx = find(strcmp(level_categories, levels{i}));level_counts(idx) = level_counts(idx) + 1;endbar(level_counts, 'FaceColor', [0.8 0.4 0.2]);set(gca, 'XTickLabel', level_categories);title('训练质量等级分布', 'FontSize', 12, 'FontWeight', 'bold');ylabel('数量');subplot(2, 3, 4);imagesc(obj.EvaluationResults.MembershipMatrix);colorbar;title('各指标隶属度热力图', 'FontSize', 12, 'FontWeight', 'bold');xlabel('评价指标');ylabel('训练样本');set(gca, 'XTick', 1:length(obj.EvaluationIndicators));set(gca, 'XTickLabel', obj.EvaluationIndicators(:,1), 'XTickLabelRotation', 45);subplot(2, 3, 5);avg_membership = mean(obj.EvaluationResults.MembershipMatrix, 1);radar_plot(avg_membership, obj.EvaluationIndicators(:,1));title('各指标平均隶属度雷达图', 'FontSize', 12, 'FontWeight', 'bold');subplot(2, 3, 6);plot(scores, '-o', 'LineWidth', 2, 'MarkerSize', 4, 'Color', [0.2 0.7 0.3]);title('训练质量时间趋势', 'FontSize', 12, 'FontWeight', 'bold');xlabel('训练批次');ylabel('综合得分');grid on;sgtitle('模拟机协同训练质量评价综合分析', 'FontSize', 16, 'FontWeight', 'bold');endfunction generateReport(obj)fprintf('\n=== 模拟机协同训练质量评价报告 ===\n');fprintf('评价时间: %s\n', datestr(now));fprintf('评价样本数: %d\n', length(obj.EvaluationResults.ComprehensiveScores));avg_score = mean(obj.EvaluationResults.ComprehensiveScores);fprintf('平均综合得分: %.4f\n', avg_score);levels = obj.EvaluationResults.QualityLevels;level_dist = tabulate(levels);fprintf('\n质量等级分布:\n');for i = 1:size(level_dist, 1)fprintf(' %s: %.1f%% (%d个)\n', level_dist{i,1}, level_dist{i,3}, level_dist{i,2});endavg_membership = mean(obj.EvaluationResults.MembershipMatrix, 1);[min_membership, min_idx] = min(avg_membership);fprintf('\n薄弱环节分析:\n');fprintf(' 最薄弱指标: %s (平均隶属度: %.4f)\n', ...obj.EvaluationIndicators{min_idx,1}, min_membership);fprintf('\n改进建议:\n');if min_membership < 0.7fprintf(' * 重点加强"%s"方面的训练\n', obj.EvaluationIndicators{min_idx,1});endif avg_score < 0.8fprintf(' * 建议增加协同训练频次\n');fprintf(' * 优化训练情景设计\n');endendend
end
function radar_plot(data, labels)n = length(data);angles = linspace(0, 2*pi, n+1);angles = angles(1:end-1);data_radar = [data, data(1)];angles_radar = [angles, angles(1)];polarplot(angles_radar, data_radar, 'LineWidth', 2, 'Color', [0.8 0.2 0.2]);thetaticks(rad2deg(angles));thetaticklabels(labels);rlim([0 1]);
end
4. 应用示例
function main_simulator_evaluation()clear; close all; clc;num_samples = 50;num_indicators = 8;rng(42); training_data = 0.6 + 0.3 * rand(num_samples, num_indicators);evaluator = SimulatorTrainingQualityEvaluation();results = evaluator.evaluateTrainingQuality(training_data);evaluator.visualizeResults();evaluator.generateReport();save('training_evaluation_results.mat', 'evaluator', 'results');fprintf('\n评价完成!结果已保存。\n');
end
5. 模型优势与创新点
技术优势:
- 改进云物元模型:结合云模型的随机性和物元理论的可拓性
- 组合权重确定:主客观权重结合,避免单一方法的局限性
- 多维度评价:从技能、协作、系统等多角度全面评估
- 可视化分析:丰富的图表展示,便于结果解读
应用价值:
- 为模拟机训练提供科学的质量评价标准
- 识别训练中的薄弱环节,指导训练改进
- 实现训练质量的量化管理和持续提升
- 为训练资源配置和课程优化提供决策支持
完整代码私信MATLAB基于改进云物元的模拟机协同训练质量评价
