RV1126 NO.37:OPENCV的图像叠加功能
一.图像叠加功能简介:
图像叠加顾名思义就是在原图像里面,添加一些其他图像数据,最常见的就是在原图像中添加一些水印图像。这些水印图像可以是:时间戳、LOGO图像等等。

如上图,原图像是山的背景,在这个图像的左上角叠加绿色的LOGO标志,然后两个图像就可以融合在一起。上面这个例子,就是最经典的图像叠加案例。
二.OPENCV中图像叠加常用的API:
在OpenCV中,图像叠加有多种实现方式。下面介绍几个最常用的API接口。
2.1. 使用copyTo方法实现图像叠加
copyTo是最常用的图像叠加方法之一。其核心步骤是:
- 先确定ROI(兴趣区域)
- 然后调用copyTo方法将ROI添加到目标图像 需要注意的是,logo图像尺寸通常应小于原图。
API定义如下:
void copyTo(OutputArray m) const
参数说明:
- OutputArray m:目标图像的二进制数据
具体实现代码(详见手写示例部分):
Mat src_img_pic= imread("frame1.jpg");
Mat logo_img_pic = imread("jaychou.png");Mat logo_mat_roi = src_img_pic(Rect(0, 0 ,logo_img_pic.cols, logo_img_pic.rows));
logo_img_pic.copyTo(logo_mat_roi);
imwrite("copyImage_output.jpg", src_img_mat);经过上述处理过后,整个图像的输出如下图

2.2. addWeighted方法实现图像叠加
addWeighted是另一种常用的图像叠加方法,其核心原理是通过对两幅图像执行加权求和运算来实现融合效果。与简单的copyTo方法相比,addWeighted的优势在于能够灵活调整图像的透明度及渐变效果。该方法的API定义如下:
CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst, int dtype = -1);参数说明:
- src1:第一个输入图像
- alpha:第一个图像的权重系数(双精度浮点数)
- src2:第二个输入图像
- beta:第二个图像的权重系数(双精度浮点数)
- gamma:加权求和的偏移量(默认值为0的双精度浮点数)
- dst:输出图像,存储加权融合结果
- dtype:输出图像类型(默认-1表示与输入图像类型相同)
其数学表达式为: dst = src1 × alpha + src2 × beta + gamma
实际应用时需要注意两种不同情况:
- 当两幅待融合图像尺寸相同时
- 当两幅图像尺寸不一致时
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>using namespace cv;
using namespace std;int main(int argc, char * argv[])
{Mat src1 = imread(argv[1]); //src1原图像的数据Mat src2 = imread(argv[2]); //src2是LOGO图像的数据//判断src1长度和src2是否相同,若不同则进行以下操作if(src1.size != src2.size){Mat image_roi = src1(Rect(20 , 20, src2.cols, src2.rows)); //在原图像中截取一个可感兴趣区域,感兴趣区域double alpha = 0.4; //alpha第一个图像的权重值,这里是0.4double beta = 1 - alpha;//beta是第二个图像权重值,1- alpha = 0.6,第二个图像的清晰度较高int gamma = 0; //gamma默认为0addWeighted(image_roi, alpha , src2, beta, gamma, image_roi);//调用addWeighted对src1和src2进行图像融合,当两张图片不相同的情况下,他所操作的都是感兴趣的区域imwrite("addweighted_norsamesize.jpg", src1); }else{double alpha = 0.4;//alpha第一个图像的权重值,这里是0.4double beta = 1 - alpha;//beta是第二个图像权重值,1- alpha = 0.6,第二个图像的清晰度较高int gamma = 0; Mat dst;addWeighted(src1, alpha , src2, beta, gamma, dst); //调用addWeighted对src1和src2进行图像融合imwrite("addweighted_samesize.jpg", dst);}return 0;
}
上面的代码分了两种情况处理,当两个融合图像不相同的情况下,则需要调整原图像的大小,一般使用ROI区域调整(Mat imageROI = src1(Rect(20, 20, src2.cols, src2.rows));),再去调用addWeighted去融合两张图片,值得注意的是alpha第一个图像的权重是0.4, LOGO图像的权重是1-alpha = 0.6,这说明LOGO图像的权重更高,更清晰。若两个融合图像大小相同,则直接调用addWeighted即可。
下面我们看一下实际效果:
---------------------------------------------------------------------------------------------------------------------------------
第一种情况,融合图片尺寸不一样,如下图:

第二种情况,融合图片尺寸一样,如下图:
frame1.jpg

frame1_process.jpg

最终合成的效果是:

可以看到,我们最终融合的图片,alpha是原图像的加权值0.4,beta = 1 - alpha = 0.6是frame1_process.jpg的加权值。可以看到frame1_process.jpg的图像比frame1.jpg更明显
