当前位置: 首页 > news >正文

OpenCV利用HSV颜色区间分离不同物体

需求

当前有个需求是从一个场景中将三个不同的颜色的二维码分离出来,如下图所示。
示例图像
这里有两个思路可以使用

  • 思路一是通过深度学习的方式,训练一个能够识别旋转边界框的模型,但是需要大量的数据进行模型训练,此处缺少训练数据,不太方便执行。
  • 思路二则是直接通过颜色进行分离,找到颜色的区间,通过去骗判断的方式分别分离出三个不同颜色对应的轮廓。

方案

首先,先要找到图像的HSV颜色对应表格,如下所示。
在这里插入图片描述
然后按照读取图像->转化为HSV通道图像->颜色分离的思路编写代码即可,详细的代码如下。

# -*- coding: utf-8 -*-
# @Time    : 2023/5/31 22:59
# @Author  : 肆十二
# @Email   : 3048534499@qq.com
# @File    : demo
# @Software: PyCharm

import numpy as np
import cv2
import os

# 参考:https://blog.csdn.net/chenghaoy/article/details/86509950
def get_red(image_path):
    # 设定颜色HSV范围,假定为红色
    redLower_1 = np.array([0, 43, 46])
    redUpper_1 = np.array([10, 255, 255])

    redLower_2 = np.array([156, 43, 46])
    redUpper_2 = np.array([180, 255, 255])

    # 读取图像
    img = cv2.imread(image_path)

    # 将图像转化为HSV格式
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    # 去除颜色范围外的其余颜色
    mask_1 = cv2.inRange(hsv, redLower_1, redUpper_1)
    mask_2 = cv2.inRange(hsv, redLower_2, redUpper_2)
    mask = mask_1 + mask_2
    # mask = cv2.merge([mask_1, mask_2])
    # mask = cv2.
    # 二值化操作
    ret, binary = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY_INV)
    cv2.imwrite("results/red.jpg", binary)


def get_yellow(image_path):
    # 设定颜色HSV范围,假定为红色
    redLower = np.array([26, 43, 46])
    redUpper = np.array([34, 255, 255])

    # 读取图像
    img = cv2.imread(image_path)

    # 将图像转化为HSV格式
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    # 去除颜色范围外的其余颜色
    mask = cv2.inRange(hsv, redLower, redUpper)
    # 二值化操作
    ret, binary = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY_INV)
    cv2.imwrite("results/yellow.jpg", binary)

def get_green(image_path):
    # 设定颜色HSV范围,假定为红色
    redLower = np.array([35, 43, 46])
    redUpper = np.array([77, 255, 255])
    # 读取图像
    img = cv2.imread(image_path)
    # img = cv2.medianBlur(img, 5)
    # 将图像转化为HSV格式
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    # hsv =
    # 去除颜色范围外的其余颜色
    mask = cv2.inRange(hsv, redLower, redUpper)
    # 二值化操作
    ret, binary = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY_INV)
    # img[img==0] =
    cv2.imwrite("results/green.jpg", binary)

if __name__ == '__main__':
    image_path = "a.jpg"

    get_red(image_path)
    get_yellow(image_path)
    get_green(image_path)

OK在主函数中传入上图,之后在result文件夹下就能生成分离之后的结果,如下所示。

  • 绿色二维码分离结果
    在这里插入图片描述

  • 红色二维码分离结果
    在这里插入图片描述

  • 黄色二维码分离结果
    在这里插入图片描述

总结

很多时候,不需要过于依赖AI,通过传统的图像检测算法也能达到良好的效果,比如今天就通过HSV颜色通道的形式来进行分离,这在工业场景中是非常实用的。

相关文章:

  • linux开发板树莓派下载vnc远程桌面
  • 前菜---二叉树+堆的小练习
  • 手写单链表(指针)(next域)附图
  • docker资源限制
  • 【matlab】Matlab三维绘图指南
  • 使用Python实现发送Email电子邮件【第19篇—python发邮件】
  • SolidWorks中的InsertCombineFeature
  • 【C++进阶02】多态
  • Go 泛型之类型参数
  • PyTorch之线性回归
  • 第1课 配置FFmpeg+OpenCV开发环境
  • Kioptrix-3
  • 08 2024考研408-数据结构 第八章-排序学习笔记
  • 【51单片机系列】C51中的中断系统扩展实验
  • Linux ContOS7 日志管理(rsyslog)
  • Ubuntu 常用命令之 chown 命令用法介绍
  • STM32的以太网外设+PHY(LAN8720)使用详解(7):以太网数据接收及发送测试
  • ChatGPT4与ArcGIS Pro3助力AI 地理空间分析和可视化及助力科研论文写作
  • 【小黑嵌入式系统第十一课】μC/OS-III程序设计基础(一)——任务设计、任务管理(创建基本状态内部任务)、任务调度、系统函数
  • MFC窗体背景颜色的设置、控件白色背景问题、控件文本显示重叠问题、被父窗体背景覆盖的问题
  • 98年服装“厂二代”:关税压力下,我仍相信中国供应链|湃客Talk
  • 盖茨:20年内将捐出几乎全部财富,盖茨基金会2045年关闭
  • 追光|铁皮房、土操场,这有一座“筑梦”摔跤馆
  • 两部上戏学生作品亮相俄罗斯“国际大学生戏剧节”
  • 中俄领导人将讨论从俄罗斯经蒙古至中国天然气管道项目?外交部回应
  • 央行:5月15日起下调金融机构存款准备金率0.5个百分点