当前位置: 首页 > news >正文

html中网站最下面怎么做昆明医院网站建设

html中网站最下面怎么做,昆明医院网站建设,百度搜索引擎的功能,推动高质量发展的必要性KM曲线 在分析疾病的死亡率时,我们往往会纠结于怎样在逻辑架构中去考虑未死亡的人群,以及想研究两种药物的表现效果,但病人的指标表现都不明显,作用于其他指标且很难量化。 而KM曲线可以很好地反映人群在时间序列上的生存率&…

KM曲线

在分析疾病的死亡率时,我们往往会纠结于怎样在逻辑架构中去考虑未死亡的人群,以及想研究两种药物的表现效果,但病人的指标表现都不明显,作用于其他指标且很难量化。

而KM曲线可以很好地反映人群在时间序列上的生存率,且能考虑到中途生存出院的数据,因为死亡率并不会等到病人都死亡了再去计算,而KM曲线对于这类数据的处理是出院人群不影响生存概率,即不会提高它,只是当做数据集的长度变短了,这样可以有效避免对于生存率和药物效果的误判。

这里举一个例子来说明:

library(survival)
library(survminer)# 1. 生成模拟数据集
set.seed(123)  # 确保结果可重复
n <- 100       # 样本量# 创建数据集:时间、事件状态(1=发生事件,0=删失)、组别
time <- round(rexp(n, rate=1/50), 1)  # 生存时间(指数分布)
status <- rbinom(n, size=1, prob=0.7) # 70%的概率发生事件
group <- sample(c("A", "B"), n, replace=TRUE) # 随机分组# 创建数据框
surv_data <- data.frame(time, status, group)# 查看前几行数据
head(surv_data)# 2. 拟合KM模型
km_fit <- survfit(Surv(time, status) ~ group, data=surv_data)# 3. 绘制KM曲线
ggsurvplot(km_fit, data = surv_data,pval = TRUE,          # 显示p值conf.int = TRUE,      # 显示置信区间risk.table = TRUE,    # 显示风险表palette = c("#E7B800", "#2E9FDF"), # 颜色xlab = "Time (days)", # x轴标签ylab = "Survival Probability", # y轴标签title = "Kaplan-Meier Survival Curve", # 标题legend.labs = c("Group A", "Group B")) # 图例标签# 4. 查看汇总统计
summary(km_fit)# 5. 计算中位生存时间
km_fit

输出:

Call: survfit(formula = Surv(time, status) ~ group, data = surv_data)group=A time n.risk n.event survival std.err lower 95% CI upper 95% CI0.2     61       1   0.9836  0.0163      0.95225        1.0002.1     60       1   0.9672  0.0228      0.92354        1.0002.8     58       1   0.9505  0.0278      0.89750        1.0003.4     57       1   0.9339  0.0320      0.87327        0.9997.3     54       1   0.9166  0.0357      0.84912        0.98910.8     53       1   0.8993  0.0390      0.82594        0.97913.0     51       1   0.8816  0.0421      0.80294        0.96814.0     49       1   0.8636  0.0449      0.78001        0.95614.1     48       1   0.8457  0.0474      0.75764        0.94414.2     47       1   0.8277  0.0497      0.73575        0.93115.3     45       1   0.8093  0.0519      0.71369        0.91815.7     44       1   0.7909  0.0539      0.69203        0.90415.8     42       1   0.7720  0.0558      0.67010        0.89016.0     41       1   0.7532  0.0575      0.64852        0.87519.0     40       1   0.7344  0.0591      0.62726        0.86024.0     39       1   0.7156  0.0605      0.60630        0.84528.2     38       1   0.6967  0.0618      0.58561        0.82929.5     36       1   0.6774  0.0630      0.56449        0.81331.5     35       1   0.6580  0.0641      0.54364        0.79632.2     34       1   0.6387  0.0651      0.52304        0.78034.3     33       1   0.6193  0.0659      0.50270        0.76339.5     32       1   0.6000  0.0666      0.48258        0.74648.3     29       1   0.5793  0.0675      0.46103        0.72848.6     28       1   0.5586  0.0682      0.43975        0.71048.7     27       1   0.5379  0.0687      0.41876        0.69151.4     25       1   0.5164  0.0692      0.39703        0.67256.5     23       1   0.4939  0.0698      0.37446        0.65259.6     22       1   0.4715  0.0701      0.35225        0.63162.7     21       1   0.4490  0.0703      0.33039        0.61066.5     20       1   0.4266  0.0703      0.30887        0.58972.0     18       1   0.4029  0.0702      0.28625        0.56774.8     16       1   0.3777  0.0702      0.26235        0.54478.2     13       1   0.3486  0.0706      0.23446        0.51878.5     11       2   0.2853  0.0706      0.17566        0.46381.0      9       1   0.2536  0.0695      0.14820        0.43486.6      8       1   0.2219  0.0676      0.12207        0.40392.8      7       1   0.1902  0.0650      0.09734        0.372108.4      6       1   0.1585  0.0614      0.07417        0.339136.3      4       1   0.1189  0.0574      0.04611        0.306202.1      3       1   0.0792  0.0501      0.02294        0.274224.9      2       1   0.0396  0.0376      0.00617        0.254360.6      1       1   0.0000     NaN           NA           NACall: survfit(formula = Surv(time, status) ~ group, data = surv_data)n events median 0.95LCL 0.95UCL
group=A 61     43   56.5    39.5    78.5
group=B 39     28   53.4    42.5    82.1

从输出中,我们可以观察到两组的中位生存时间很接近,说明两组数据的病人存活率差不多,而图片中两条曲线的趋势相近,且置信区间(图中的阴影部分)大部分重叠,更进一步说明了两组数据的差异性不大。最后观察p值远大于0.05,说明在统计上两组数据没有显著不同。但要注意的是,随着时间的推移,样本量的数量在急剧减少,在过了随访时间后,就很难跟踪到病人进一步的变化,所以要想确定结论是否是对的,还需要扩大数据量去进一步分析。

http://www.dtcms.com/a/564327.html

相关文章:

  • 怎么宣传网站网站建设 服务条款
  • 广东建设部官方网站中间商网站怎么做
  • 一般网站维护需要做什么wordpress 迁移 域名
  • lnmp wordpress网站求个网站2021能用的
  • 上海建站 seowordpress 文本小工具添加
  • 做网站都去哪里找模板环保行业网站怎么做
  • wordpress数据库导出电商seo是什么意思
  • 做网站如何语音对话网站建设及解析流程
  • 沙井网站推广高新区网站建设 意义
  • 淘宝网站设计公司wordpress自动视频播放器代码
  • 无障碍网站开发常用网站域名
  • 咸阳网站建设报价试用网站模版
  • 福州专业做网站的公司哪家好简洁文章类网站
  • 织梦网站源码找一品资源网站开发方向 英语翻译
  • 推广网站概况上海涛飞专业网站建设
  • 网站域名如何影响seo编程自学教程入门
  • 加拿大28网站开发秦皇岛pc端网站建设
  • 安徽网站建设论坛推广运营
  • 教育教学成果展示网站建设织梦网站入侵
  • 二手房中介网站模板网站域名建设怎么填写
  • 企业网站建设与管理关键词优化的方法有哪些
  • 淄博天一建设项目招标代理有限公司网站网站开发一个支付功能要好多钱
  • 网站策划与设计百度教育官网登录入口
  • 机场建设投资公司官方网站两学一做知识竞答网站
  • 我做网站了 圆通360网站建设官网
  • 做a视频 免费网站公司名称可以变更吗
  • 怎样建俄文网站如何做的网站手机可以用吗
  • wordpress网站导航主题装潢设计专业可以考二建吗
  • 网站开发需要申请专利吗开发网页多少钱
  • 岳麓做网站的公司域名直卖网