当前位置: 首页 > news >正文

二分查找法详解(6种变形)

前言
在之前的博客中,我给大家介绍了最基础的二分查找法(没学的话点我点我!)

今天我将带大家学习二分法的六种变形如何使用,小伙伴们,快来开始今天的学习吧!
在这里插入图片描述

文章目录

  • 1,查找第一个(从左到右)= 目标值的,若不存在返回 -1
  • 2,查找第一个 >= 目标值的
  • 3,查找第一个 > 目标值的
  • 4,查找最后一个 = 目标值的 ,若不存在返回- 1
  • 5,查找最后一个 <= 目标值的
  • 6,查找最后一个 < 目标值的
  • 总结

1,查找第一个(从左到右)= 目标值的,若不存在返回 -1

与原版二分法其实差不多,当一个数组中有重复的目标值时,使用该方法可以找到从左到右第一个等于目标值的下标。
因为我们要找的是第一个等于目标值的下标,那我们不仅仅在arr[mid] > key时去左边找,在arr[mid]>= key我们也要去找,因为我们需要要最左边等于目标值的下标。
注意事项
最后我们要判断left是否越界(left 有可能等于数组元素的个数),而且最后arr[left]是否等于要找的key。
代码:

int efcz(int* arr, int key,int left,int right)
{
 int len = right+1;//数组长度(元素个数)
	int mid = (left + right) / 2;
	while (left <= right)
	{
		mid = (left + right) / 2;
		if (arr[mid] >= key)
		{
			right = mid - 1;
		}
		if (arr[mid] < key)
		{
			left = mid + 1;
		}
	}
	if (left < len&&arr[left] != key)//判断一下是否找到元素
		return -1;
	else
		return left;
}
int main()
{
	int arr[10] = { 1,2,3,5,5,5,5,5,5,6 };//创建数组
	int key = 5;//目标值为5
	int left = 0;//设置左右起点
	int right = sizeof(arr) / sizeof(arr[0]);
	printf("%d", efcz(arr, key,left,right));//进入二分查找函数
	return 0;
}

2,查找第一个 >= 目标值的

这次我们需要查找第一个大于等于目标值的下标,这次我们不需要判断left越界,如果越界就说明没有找到,说明整个数组都比目标值要小。
代码:

//思路和第一种一样,我就不加注释了,如果不懂可以私信问我
int efcz(int* arr, int key, int left, int right)
{
	int mid = (left + right) / 2;
	while (left <= right)
	{
		mid = (left + right) / 2;
		if (arr[mid] >= key)
		{
			right = mid - 1;
		}
		if (arr[mid] < key)
		{
			left = mid + 1;
		}
	}
		return left;
}
int main()
{
	int arr[10] = { 1,2,3,5,5,5,5,5,6,8 };
	int key = 7;
	int left = 0;
	int right = sizeof(arr) / sizeof(arr[0]);
	printf("%d", efcz(arr, key, left, right));
	return 0;
}

3,查找第一个 > 目标值的

这次我们需要查找第一个大于目标值的下标,这次我们同样不需要判断left越界,如果越界就说明没有找到,说明整个数组都比目标值要小。
另外我们需要改变一下函数内部的判断条件,当arr[mid] <= key时,left = mid + 1
因为我们不是要找相等的,是要找大于目标值的。
代码:

//思路和第一种一样,我就不加注释了,如果不懂可以私信问我
int efcz(int* arr, int key, int left, int right)
{
	int mid = (left + right) / 2;
	while (left <= right)
	{
		mid = (left + right) / 2;
		if (arr[mid] > key)
		{
			right = mid - 1;
		}
		if (arr[mid] <= key)
		{
			left = mid + 1;
		}
	}
	return left;
}
int main()
{
	int arr[10] = { 1,2,3,5,5,5,5,5,6,8 };
	int key = 5;
	int left = 0;
	int right = sizeof(arr) / sizeof(arr[0]);
	printf("%d", efcz(arr, key, left, right));
	return 0;
}

4,查找最后一个 = 目标值的 ,若不存在返回- 1

因为我们要找的是第一个等于目标值的下标,那我们不仅仅在arr[mid] < key时去右边找,在arr[mid]>= key我们也要去找,因为我们需要要最右边边等于目标值的下标。
注意事项
最后我们要判断right是否越界(right 有可能等于-1),而且最后arr[right]是否等于要找的key。
代码:

//思路和第一种一样,我就不加注释了,如果不懂可以私信问我
int efcz(int* arr, int key, int left, int right)
{
	int mid = (left + right) / 2;
	while (left <= right)
	{
		mid = (left + right) / 2;
		if (arr[mid] > key)
		{
			right = mid - 1;
		}
		if (arr[mid] <= key)
		{
			left = mid + 1;
		}
	}
	if (right >= 0 && arr[right] == key)//判断是否找到
		return right;
	else
		return -1;
}
int main()
{
	int arr[10] = { 1,2,3,5,5,5,5,5,6,8 };
	int key = 5;
	int left = 0;
	int right = sizeof(arr) / sizeof(arr[0]);
	printf("%d", efcz(arr, key, left, right));
	return 0;
}

5,查找最后一个 <= 目标值的

这次我们需要查找第一个小于等于目标值的下标,这次我们不需要判断right越界,如果越界就说明没有找到,说明整个数组都比目标值要大。
代码:

//思路和第一种一样,我就不加注释了,如果不懂可以私信问我
int efcz(int* arr, int key, int left, int right)
{
	int mid = (left + right) / 2;
	while (left <= right)
	{
		mid = (left + right) / 2;
		if (arr[mid] > key)
		{
			right = mid - 1;
		}
		if (arr[mid] <= key)
		{
			left = mid + 1;
		}
	}
		return right;
}
int main()
{
	int arr[10] = { 1,2,3,5,5,5,5,5,6,8 };
	int key = 4;
	int left = 0;
	int right = sizeof(arr) / sizeof(arr[0]);
	printf("%d", efcz(arr, key, left, right));
	return 0;
}

6,查找最后一个 < 目标值的

这次我们需要查找第一个小于目标值的下标,这次我们同样不需要判断right越界,如果越界就说明没有找到,说明整个数组都比目标值要大。
另外我们也需要改变一下函数内部的判断条件,当arr[mid] >= key时,right = mid - 1,因为我们不是要找相等的,是要找小于目标值的。
代码:

//思路和第一种一样,我就不加注释了,如果不懂可以私信问我
int efcz(int* arr, int key, int left, int right)
{
	int mid = (left + right) / 2;
	while (left <= right)
	{
		mid = (left + right) / 2;
		if (arr[mid] >= key)
		{
			right = mid - 1;
		}
		if (arr[mid] < key)
		{
			left = mid + 1;
		}
	}
	return right;
}
int main()
{
	int arr[10] = { 1,2,3,5,5,5,5,5,6,8 };
	int key = 5;
	int left = 0;
	int right = sizeof(arr) / sizeof(arr[0]);
	printf("%d", efcz(arr, key, left, right));
	return 0;
}

总结

我认为可以分两组记忆这六种变形,前三组一类,后三组一类,前三组都是返回left,后三组都是返回right,同时我们会发现,第一种和第四种,第二种和第五种,第三种和第六种都十分的相似,所以自己练练就能掌握,而且不容易忘记,本期的分享就到这里,如果觉得博主讲的不错的话,千万不要忘记给博主一个关注,点赞,收藏哦~,小伙伴们,我们下期再见!

相关文章:

  • 去掉乘法运算的加法移位神经网络架构
  • http -- 跨域问题详解(浏览器)
  • Kafka消费者组
  • 链接未来:深入理解链表数据结构(二.c语言实现带头双向循环链表)
  • react v-18父组件调用子组件的方法和数据
  • 11种方法判断​软件的安全可靠性​
  • CentOS 7 Tomcat服务的安装
  • 关于“Python”的核心知识点整理大全31
  • 55.0/CSS 的应用(详细版)
  • [Unity]接入Firebase 并且关联支付埋点
  • R语言【cli】——cli_warn可以更便捷的在控制台输出警告信息
  • 数据管理平台Splunk Enterprise本地部署结合内网穿透实现远程访问
  • IDEA版SSM入门到实战(Maven+MyBatis+Spring+SpringMVC) -Spring的AOP前奏
  • 图像处理—小波变换
  • Apache Pulsar 技术系列 - PulsarClient 实现解析
  • 【Spring实战】配置单数据源
  • ICC2:Less than minimum edge length和Concave convex edge enclosure
  • Backend - Django 项目创建 运行
  • 基于查表法的水流量算法设计与实现
  • 漫谈UNIX、Linux、UNIX-Like
  • 视频丨习近平同普京在主观礼台出席红场阅兵式
  • 雇来的“妈妈”:为入狱雇主无偿带娃4年,没做好准备说再见
  • 75岁亚当·费舍尔坐镇,再现80分钟马勒《第九交响曲》
  • 万玲、胡春平调任江西省鹰潭市副市长
  • 上海“随申兑”服务平台有哪些功能?已归集800余个惠企政策
  • 美联储宣布维持联邦基金利率目标区间不变