当前位置: 首页 > news >正文

阿里巴巴 网站设计网页制作网站

阿里巴巴 网站设计,网页制作网站,制作网站电话,ui界面设计作品模板文章目录eventreferencesevent let A{x∣x被2整除,x∈N}A\{x| x被2整除,x \in \mathbb{N^}\}A{x∣x被2整除,x∈N},A′{x∣x不能被2整除,x∈N}A\{x| x不能被2整除,x \in \mathbb{N^}\}A′{x∣x不能被2整除,…

文章目录

  • event
  • references

event

  1. let A={x∣x被2整除,x∈N+}A=\{x| x被2整除,x \in \mathbb{N^+}\}A={xx2整除,xN+},A′={x∣x不能被2整除,x∈N+}A'=\{x| x不能被2整除,x \in \mathbb{N^+}\}A={xx不能被2整除,xN+},so A′A'A can be called as the inverse (opposite) event of AAA.
  2. at least one of the events AAA and A′A'A will certainly happen , so that is A∪A′A\cup A'AA.in the same way, the A1,A2,.....A_1,A_2,.....A1,A2,..... events have one or more than one will definitely appear,that is A1∪A2∪.....A_1\cup A_2\cup.....A1A2..... .
  3. if both of AAA and A′A'A occur ,then that situation can be called as A∩A′A\cap A'AA.in a similar way, the A1∩A2∩.....A_1\cap A_2\cap.....A1A2..... represents those event such as A1,A2,.....A_1,A_2,.....A1,A2,..... all happen.
    for example, there are a great deal of corn kernels on a table,you take out some cof them for cooking, let A1={x∣x≥10}A_1=\{x|x \ge10\}A1={xx10},A2={x∣x≤50}A_2=\{x|x \le 50\}A2={xx50},A3={x∣x是偶数}A_3=\{x|x 是偶数\}A3={xx是偶数},the A′=A1∩A2∩A3=A1A2A3A'=A_1\cap A_2\cap A_3=A_1A_2A_3A=A1A2A3=A1A2A3 reports the fact that the number of corn kernels you token from the table between 10 and 50 and will be divisible by 2.
  4. as similar as sets,two events such as AAA and A′A'A have substraction operation that A−A′A-A'AA,for example, let A1={x∣x≤30}A_1=\{x|x \le 30\}A1={xx30},A2={x∣x≤50}A_2=\{x|x \le 50\}A2={xx50},the A2−A1={x∣x≤50,x>30}A_2-A_1=\{x|x \le 50,x > 30\}A2A1={xx50,x>30}.
  5. if the two AAA and A′A'A events never happen concurrently, then they can be called as incompatible events,such as A={x∣x是偶数}A=\{x|x 是偶数\}A={xx是偶数} and A′={x∣x是奇数}A'=\{x|x 是奇数\}A={xx是奇数}.
  6. In probability theory, the operations on events (subsets of a sample space) follow specific algebraic rules similar to set theory. Here are the fundamental laws:

1. Commutative Laws

  • Union: A∪B=B∪AA \cup B = B \cup AAB=BA
  • Intersection:A∩B=B∩AA \cap B = B \cap AAB=BA

2. Associative Laws

  • Union: (A∪B)∪C=A∪(B∪C)(A \cup B) \cup C = A \cup (B \cup C)(AB)C=A(BC)
  • Intersection: (A∩B)∩C=A∩(B∩C)(A \cap B) \cap C = A \cap (B \cap C)(AB)C=A(BC)

3. Distributive Laws

  • Union over Intersection:
    A∪(B∩C)=(A∪B)∩(A∪C)A \cup (B \cap C) = (A \cup B) \cap (A \cup C) A(BC)=(AB)(AC)
  • Intersection over Union:
    A∩(B∪C)=(A∩B)∪(A∩C)A \cap (B \cup C) = (A \cap B) \cup (A \cap C) A(BC)=(AB)(AC)

4. De Morgan’s Laws (Duality Laws)

  • Complement of Union:
    (A∪B)c=Ac∩Bc(A \cup B)^c = A^c \cap B^c (AB)c=AcBc
  • Complement of Intersection:
    (A∩B)c=Ac∪Bc(A \cap B)^c = A^c \cup B^c (AB)c=AcBc

5. Idempotent Laws

  • Union: A∪A=AA \cup A = AAA=A
  • Intersection: A∩A=AA \cap A = AAA=A

6. Absorption Laws

  • Union Absorption: A∪(A∩B)=AA \cup (A \cap B) = AA(AB)=A
  • Intersection Absorption: A∩(A∪B)=AA \cap (A \cup B) = AA(AB)=A

7. Complement Laws

  • Double Negation: (Ac)c=A(A^c)^c = A(Ac)c=A
  • Universal & Empty Set:
    Sc=∅,∅c=SS^c = \emptyset, \quad \emptyset^c = S Sc=,c=S
  • Union with Universal Set: A∪S=SA \cup S = SAS=S
  • Intersection with Empty Set: A∩∅=∅A \cap \emptyset = \emptysetA=

8. Other Properties

  • Set Difference:
    A∖B=A∩BcA \setminus B = A \cap B^c AB=ABc
  • Symmetric Difference:
    AΔB=(A∖B)∪(B∖A)A \Delta B = (A \setminus B) \cup (B \setminus A) AΔB=(AB)(BA)

references

  1. 《数学》
http://www.dtcms.com/a/552364.html

相关文章:

  • dw网站轮播效果怎么做医疗器械生产质量管理规范
  • 怎么做好网站营销推广手机网络营销策划方案
  • 网站聊天代码做视频网站注意什么
  • 网站免费下载安装大全手机版手机论坛app
  • 西安网站建设产品哪个建站系统适合外贸网站建设
  • vs2017js网站开发方法正能量软件网站免费入口
  • 网站企划设计公司做电商网站搭建就业岗位
  • 网页设计师必须知道的网站一个人建网站赚钱
  • 个人网站设计模板田田田田田田田田360建筑网骗子
  • 深圳集团网站开发网站开发公司seo优化网站教程
  • 企业网站建设框架镇江网站建设找思创
  • 做汽车团购网站有哪些做网站电话号码
  • 网站建设公司合同模板下载业余学做衣服上哪个网站
  • 免费私人网站建设软件html源码网
  • 网站建设的费用报价长沙装修公司前十强
  • 网站建设策划框架电商运营新手要懂哪些
  • 宁波网站建设服务电话泉州seo用户体验
  • 苏州网站建设2万起网站建设租房网模块
  • 网站建设维护考试长沙近期大型招聘会
  • 51自学网官方网站wordpress设置密码
  • 做户外运动的网站网页设计与制作的实训报告怎样写
  • 学校网站建设答辩投简历网站
  • 做网站的课题背景介绍市场调研报告最佳范文
  • 官方网站下载微博租腾讯服务器做网站行吗
  • 织梦网站怎么做安全措施哪有专业做网站
  • 夸网站做的好怎么夸php网站怎么注入
  • iis5.1 建立网站大学生网站设计作品成品代码
  • 简易广州网站建设临沂做网站系统
  • 松江区做网站的公司设计师公司排名
  • 网站支付链接怎么做郑州招聘网站有哪些