当前位置: 首页 > news >正文

NEFTUNE

Sure! The paper “NEFTUNE: Noisy Embeddings Improve Instruction Finetuning” introduces a simple but surprisingly effective technique to improve the performance of instruction-finetuned large language models (LLMs). Let’s break it down:


Core Idea

NEFTune (Noise Injection in Embeddings for Instruction Tuning) proposes adding controlled random noise to the text embeddings (i.e., the numerical representations of input tokens) during training only—not during inference. This small modification leads to significant performance gains across a wide range of tasks, especially in instruction-following and reasoning benchmarks.

Why It Works (Intuition)

  1. Prevents Overfitting: Instruction tuning datasets are often limited in size. Adding noise acts as a regularizer, making the model less likely to memorize training examples and more likely to generalize.
  2. Encourages Robust Representations: By slightly perturbing the input embeddings, the model learns to rely less on exact token representations and more on semantic patterns, improving robustness.
  3. Better Exploration of Representation Space: Noise helps the optimizer escape sharp minima and find flatter, more generalizable solutions.

How It’s Done

  • During training, before feeding token embeddings into the transformer layers, NEFTune adds uniform random noise:

在这里插入图片描述

where (d) is the embedding dimension and noise_alpha is typically around 5–10.

  • Crucially: No noise is added during inference—the model uses clean embeddings at test time.

Key Results

  • NEFTune improves performance without changing model architecture, data, or training pipeline—just a one-line code change.
  • Gains are consistent across models (e.g., LLaMA, Mistral) and tasks:
    • Instruction-following: Better alignment with user intent.
    • Reasoning: Improved performance on math (e.g., GSM8K) and logic tasks.
    • Low-resource settings: Especially helpful when instruction data is limited.
  • Often matches or exceeds gains from more complex methods (e.g., better data filtering, larger models).

Why It’s Significant

  • Simplicity: Easy to implement—just add noise to embeddings during training.
  • Zero inference cost: No slowdown or accuracy trade-off at test time.
  • Broad applicability: Works across model sizes and architectures.
  • Challenges assumptions: Shows that even minor perturbations in representation space can yield large gains, suggesting current instruction-tuning practices may be under-regularized.

Practical Takeaway

If you’re instruction-finetuning an LLM, try NEFTune—it’s a low-effort, high-reward tweak. Just inject uniform noise into input embeddings during training with a noise scale like noise_alpha = 10, and you’ll likely see better generalization.


Let me know if you’d like a deeper dive into the experiments, ablation studies, or how to implement it!

http://www.dtcms.com/a/537732.html

相关文章:

  • 西安优化网站技术徐州市网站开发
  • 泉州网站建设电话网站地图怎么做、
  • 二十二、DevOps:基于Tekton的云原生平台落地(三)
  • 搜狗网站收录入口万网公司注册网站
  • CUDA中__restrict__关键字的使用
  • 做热图的网站1分钟视频制作报价明细
  • 企业为什么做网站优化推广张掖市作风建设年活动网站
  • 未来做那个网站能致富爱站工具包
  • 建设一个网站系统要多久个人建站系统
  • 汽车紧固技术加速进化,推动汽车产业迈向高质量制造新阶段
  • AI结对编程:人机共创新纪元
  • 网站建设自动适应功能wordpress 开源吗
  • 专业的网站设计师房管局 网站做房查
  • 受欢迎的集团网站建设xxx网站建设与优化推广
  • 东莞市手机网站建设品牌建设项目自主验收公示的网站
  • Matplotlib指南:从入门到出版级数据可视化
  • 央企门户网站哪家做的最好seo技术顾问
  • 合肥专业做网站做网站的公司经营范围怎么写
  • 有个网站做彩盒的香奈儿网站建设策划书
  • 后台系统点击登录按钮直接跳转到目标路由下,而不是首页
  • Web Services 平台元素
  • 建站系统推荐做的高大上的网站
  • 做网站用不用thinkphpwordpress修改邮件模板
  • LeetCode:268. 丢失的数字
  • 怎么在网站添加链接美团如何进行网站的建设和维护
  • 【Linux】初识信号
  • 网站优化常见的优化技术wordpress内置函数
  • HGDB5.6.5集群备机手动switchover提示data目录无效
  • 网站开发品牌做网站 零基础从哪里开始学
  • 【Rust编程:从新手到大师】Rust变量深度详解