当前位置: 首页 > news >正文

网站开发部网站建设 地址 昌乐

网站开发部,网站建设 地址 昌乐,外贸订单一般在哪个平台接?,石家庄最新今天消息本文将介绍Pytorch的以下内容 自动微分函数 优化 模型保存和载入 好了,我们首先介绍一下关于微分的内容。 在训练神经网络时,最常用的算法是反向传播算法。在该算法中,根据损失函数相对于给定参数的梯度来调整参数(模型权重)。 为了计算这些梯度,PyTorch有一个内置…

本文将介绍Pytorch的以下内容

自动微分函数

优化

模型保存和载入

好了,我们首先介绍一下关于微分的内容。

在训练神经网络时,最常用的算法是反向传播算法。在该算法中,根据损失函数相对于给定参数的梯度来调整参数(模型权重)。

为了计算这些梯度,PyTorch有一个内置的微分引擎,名为torch.autograd。它支持任何计算图的梯度自动计算。

考虑最简单的单层神经网络,输入x,参数w和b,以及一些损失函数。它可以在PyTorch中以以下方式定义:

import torchx = torch.ones(5)  # input tensor
y = torch.zeros(3)  # expected output
w = torch.randn(5, 3, requires_grad=True)
b = torch.randn(3, requires_grad=True)
z = torch.matmul(x, w)+b
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)

张量、函数与计算图

这段代码定义了以下计算图:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在这个网络中,w和b是我们需要优化的参数。因此,我们需要能够计算损失函数相对于这些变量的梯度。为了做到这一点,我们设置了这些张量的requires_grad属性。

我们应用于张量来构造计算图的函数实际上是函数类的对象。该对象知道如何在正向方向上计算函数,以及如何在反向传播步骤中计算其导数。对反向传播函数的引用存储在张量的grad_fn属性中。您可以在文档中找到Function的更多信息。

print(f"Gradient function for z = {z.grad_fn}")
print(f"Gradient function for loss = {loss.grad_fn}")

输出为:

Gradient function for z = <AddBackward0 object at 0x0000022EDB445C30>
Gradient function for loss = <BinaryCrossEntropyWithLogitsBackward0 object at 0x0000022EDB445D20>

计算梯度

为了优化神经网络中参数的权重,我们需要计算损失函数对参数的导数,即我们需要∂loss/∂w和∂loss/∂B。为了计算这些导数,我们调用loss.backward(),然后从w.g grad和b.g grad中检索值:

loss.backward()
print(w.grad)
print(b.grad)

输出为:

tensor([[0.0549, 0.1796, 0.0399],[0.0549, 0.1796, 0.0399],[0.0549, 0.1796, 0.0399],[0.0549, 0.1796, 0.0399],[0.0549, 0.1796, 0.0399]])
tensor([0.0549, 0.1796, 0.0399])

禁用梯度跟踪

默认情况下,所有requires_grad=True的张量都在跟踪它们的计算历史并支持梯度计算。然而,在某些情况下,我们不需要这样做,例如,当我们训练了模型,只想将其应用于一些输入数据时,即我们只想通过网络进行前向计算。我们可以通过使用torch.no_grad()块包围我们的计算代码来停止跟踪计算:

z = torch.matmul(x, w)+b
print(z.requires_grad)with torch.no_grad():z = torch.matmul(x, w)+b
print(z.requires_grad)

输出为:

True
False

实现相同结果的另一种方法是在张量上使用detach()方法:

z = torch.matmul(x, w)+b
z_det = z.detach()
print(z_det.requires_grad)

输出为:

False

你可能想要禁用渐变跟踪的原因如下:

  • 将神经网络中的一些参数标记为冻结参数。

  • 当你只做正向传递时,为了加快计算速度,因为在不跟踪梯度的张量上的计算会更有效率。

更多关于计算图的知识

从概念上讲,autograd在由Function对象组成的有向无环图(DAG)中保存数据(张量)和所有执行的操作(以及产生的新张量)的记录。在DAG中,叶是输入张量,根是输出张量。通过从根到叶的跟踪图,您可以使用链式法则自动计算梯度。

在向前传递中,autograd同时做两件事:

  • 运行请求的操作来计算结果张量

  • 在DAG中维持操作的梯度函数。

当在DAG根上调用.backward()时,向后传递开始。autograd:

  • 计算每个。grad_fn的梯度,

  • 在各自张量的.grad属性中累积它们

  • 利用链式法则,一直传播到叶张量。

[!TIP]

PyTorch中的dag是动态的,需要注意的重要一点是图形是从头开始重新创建的;在每次.backward()调用之后,autograd开始填充一个新图。这正是允许您在模型中使用控制流语句的原因;如果需要,您可以在每次迭代中更改形状、大小和操作

张量梯度和雅可比积

在很多情况下,我们有一个标量损失函数,我们需要计算关于一些参数的梯度。然而,在某些情况下,输出函数是一个任意张量。在这种情况下,PyTorch允许你计算所谓的雅可比积,而不是实际的梯度。

inp = torch.eye(4, 5, requires_grad=True)
out = (inp+1).pow(2).t()
out.backward(torch.ones_like(out), retain_graph=True)
print(f"First call\n{inp.grad}")
out.backward(torch.ones_like(out), retain_graph=True)
print(f"\nSecond call\n{inp.grad}")
inp.grad.zero_()
out.backward(torch.ones_like(out), retain_graph=True)
print(f"\nCall after zeroing gradients\n{inp.grad}")

输出为:

First call
tensor([[4., 2., 2., 2., 2.],[2., 4., 2., 2., 2.],[2., 2., 4., 2., 2.],[2., 2., 2., 4., 2.]])Second call
tensor([[8., 4., 4., 4., 4.],[4., 8., 4., 4., 4.],[4., 4., 8., 4., 4.],[4., 4., 4., 8., 4.]])Call after zeroing gradients
tensor([[4., 2., 2., 2., 
http://www.dtcms.com/a/534674.html

相关文章:

  • 网站水军怎么做免费个人简历表
  • 可以拔下来做的网站吗推广方式和渠道
  • 个人网站 模版 后台管理系统清润邯郸网站
  • 满山红网站建设公司校园网站建设初探
  • 高权重网站出售企业 网站建设
  • 网站建设的需要是什么内蒙古建设集团招聘信息网站
  • 在哪请人做网站lnmp wordpress 502
  • 银川网站开发培训网站动态图怎么做
  • 怎样建网站卖东西淮安市建设局网站
  • 平面设计培训网站大全网站和平台是一个意思吗
  • 特效型网站android app for wordpress
  • 网站根目录在哪wordpress网站建设方案案例
  • 开发小程序哪家好小红书seo软件
  • 纳雍网站建设公司ps 制作网站
  • dw制作一个手机网站模板下载地址小程序后台管理系统
  • 衡阳网站优化英语门户网站织梦源码
  • 《网站建设验收报告》猪八戒类似网站开发成本
  • 有哪些网站可以推广虚拟主机怎么上传网站
  • 专业的论坛网站建设开发做网站 php j2ee
  • 大连网站模板建站吉林省建设厅官方网站
  • 怎么用vs2017做网站域名上面怎么建设网站
  • 燕郊个人做网站php购物商城
  • 大气网站首页网站安全解决方案
  • 网站模板工具深圳市住房和建设局红色警示查询
  • 能够做代理的网站有哪些辽宁建设工程信息网业绩录入规定
  • 做英文网站多钱公司网站不续费
  • 织梦网站栏目设计山东省城乡建设厅网站
  • 网站推广有哪些方式出库入库管理软件app
  • 网站怎么弄实名制认证帝国cms做英文网站
  • 做网站要懂什么编程网站设计论文开题报告