当前位置: 首页 > news >正文

洛谷 P1850 [NOIP 2016 提高组] 换教室(期望DP)【 提高+/省选−】

题目链接

https://www.luogu.com.cn/problem/P1850

思路

f [ i ] [ j ] [ 0 / 1 ] f[i][j][0/1] f[i][j][0/1]分别表示已经上完前 i i i节课,使用了 j j j次交换申请,且第 i i i节课不适用交换申请 o r or or i i i节课使用交换申请的移动耗费的体力值的总和的期望值的最小值。

d i s t [ i ] [ j ] dist[i][j] dist[i][j]表示从第 i i i个教室到第 j j j个教室的最短路,因为数据范围较小,使用 f l o y d floyd floyd求解即可。

则状态转移方程为:

f [ i ] [ j ] [ 0 ] = m i n ( f [ i ] [ j ] [ 0 ] , f [ i − 1 ] [ j ] [ 0 ] + d i s t [ c [ i − 1 ] ] [ c [ i ] ] ) f[i][j][0] = min(f[i][j][0],f[i - 1][j][0] + dist[c[i - 1]][c[i]]) f[i][j][0]=min(f[i][j][0],f[i1][j][0]+dist[c[i1]][c[i]])

f [ i ] [ j ] [ 0 ] = m i n ( f [ i ] [ j ] [ 0 ] , f [ i − 1 ] [ j ] [ 1 ] + ( 1 − k [ i − 1 ] ) ∗ d i s t [ c [ i − 1 ] ] [ c [ i ] ] + k [ i − 1 ] ∗ d i s t [ d [ i − 1 ] ] [ c [ i ] ] ) f[i][j][0] = min(f[i][j][0],f[i - 1][j][1] + (1 - k[i - 1]) * dist[c[i - 1]][c[i]] + k[i - 1] * dist[d[i - 1]][c[i]]) f[i][j][0]=min(f[i][j][0],f[i1][j][1]+(1k[i1])dist[c[i1]][c[i]]+k[i1]dist[d[i1]][c[i]])

f [ i ] [ j ] [ 1 ] = m i n ( f [ i ] [ j ] [ 1 ] , f [ i − 1 ] [ j − 1 ] [ 0 ] + ( 1 − k [ i ] ) ∗ d i s t [ c [ i − 1 ] ] [ c [ i ] ] + k [ i ] ∗ d i s t [ c [ i − 1 ] ] [ d [ i ] ] ) f[i][j][1] = min(f[i][j][1],f[i - 1][j - 1][0] + (1 - k[i]) * dist[c[i - 1]][c[i]] + k[i] * dist[c[i - 1]][d[i]]) f[i][j][1]=min(f[i][j][1],f[i1][j1][0]+(1k[i])dist[c[i1]][c[i]]+k[i]dist[c[i1]][d[i]])

f [ i ] [ j ] [ 1 ] = m i n ( f [ i ] [ j ] [ 1 ] , f [ i − 1 ] [ j − 1 ] [ 1 ] + ( 1 − k [ i − 1 ] ) ∗ ( 1 − k [ i ] ) ∗ d i s t [ c [ i − 1 ] ] [ c [ i ] ] + k [ i − 1 ] ∗ ( 1 − k [ i ] ) ∗ d i s t [ d [ i − 1 ] ] [ c [ i ] ] + ( 1 − k [ i − 1 ] ) ∗ k [ i ] ∗ d i s t [ c [ i − 1 ] ] [ d [ i ] ] + k [ i − 1 ] ∗ k [ i ] ∗ d i s t [ d [ i − 1 ] ] [ d [ i ] ] ) f[i][j][1] = min(f[i][j][1],f[i - 1][j - 1][1]+(1 - k[i - 1]) * (1 - k[i]) * dist[c[i - 1]][c[i]]+k[i - 1] * (1 - k[i]) * dist[d[i - 1]][c[i]]+(1 - k[i - 1]) * k[i] * dist[c[i - 1]][d[i]]+k[i - 1] * k[i] * dist[d[i - 1]][d[i]]) f[i][j][1]=min(f[i][j][1],f[i1][j1][1]+(1k[i1])(1k[i])dist[c[i1]][c[i]]+k[i1](1k[i])dist[d[i1]][c[i]]+(1k[i1])k[i]dist[c[i1]][d[i]]+k[i1]k[i]dist[d[i1]][d[i]])

代码

#include <bits/stdc++.h>

using namespace std;

#define int long long
#define double long double
#define endl "\n"

typedef long long i64;
typedef unsigned long long u64;
typedef pair<int, int> pii;

const int N = 2e3 + 5, M = 3e2 + 5;
const int mod = 1e9 + 7;
const int inf = 1e9;
const double eps = 1e-6;

std::mt19937 rnd(time(0));

int n, m, v, e;
int c[N], d[N], dist[M][M];
double k[N];
double f[N][N][2];
void floyd(int maxx)
{
    for (int k = 1; k <= maxx; k++)
    {
        for (int i = 1; i <= maxx; i++)
        {
            for (int j = 1; j <= maxx; j++)
            {
                dist[i][j] = min(dist[i][k] + dist[k][j], dist[i][j]);
            }
        }
    }
}
void solve(int test_case)
{
    cin >> n >> m >> v >> e;
    for (int i = 1; i <= n; i++)
    {
        cin >> c[i];
    }
    for (int i = 1; i <= n; i++)
    {
        cin >> d[i];
    }
    for (int i = 1; i <= n; i++)
    {
        cin >> k[i];
    }
    int maxx = 300;
    for (int i = 1; i <= maxx; i++)
    {
        for (int j = 1; j <= maxx; j++)
        {
            dist[i][j] = inf;
        }
    }
    for (int i = 1; i <= maxx; i++)
        dist[i][i] = 0;
    for (int i = 1, a, b, w; i <= e; i++)
    {
        cin >> a >> b >> w;
        dist[a][b] = min(dist[a][b], w);
        dist[b][a] = min(dist[b][a], w);
    }
    floyd(maxx);
    for (int i = 1; i <= n; i++)
    {
        for (int j = 0; j <= min(i, m); j++)
        {
            f[i][j][0] = f[i][j][1] = (double)(1e18);
        }
    }
    f[1][0][0] = 0;
    f[1][1][1] = 0;
    for (int i = 2; i <= n; i++)
    {
        for (int j = 0; j <= min(i, m); j++)
        {
            double res = 0;
            if (j < i)
            {
                f[i][j][0] = min(f[i][j][0], f[i - 1][j][0] + dist[c[i - 1]][c[i]]);
                res = f[i - 1][j][1] + ((double)(1) - k[i - 1]) * dist[c[i - 1]][c[i]] + k[i - 1] * dist[d[i - 1]][c[i]];
                f[i][j][0] = min(f[i][j][0], res);
            }

            if (j)
            {
                res = f[i - 1][j - 1][0] + ((double)(1) - k[i]) * dist[c[i - 1]][c[i]] + k[i] * dist[c[i - 1]][d[i]];
                f[i][j][1] = min(f[i][j][1], res);
                res = f[i - 1][j - 1][1];
                res += ((double)(1) - k[i - 1]) * ((double)(1) - k[i]) * dist[c[i - 1]][c[i]];
                res += k[i - 1] * ((double)(1) - k[i]) * dist[d[i - 1]][c[i]];
                res += ((double)(1) - k[i - 1]) * k[i] * dist[c[i - 1]][d[i]];
                res += k[i - 1] * k[i] * dist[d[i - 1]][d[i]];
                f[i][j][1] = min(f[i][j][1], res);
            }
        }
    }
    double ans = 1e18;
    for (int i = 0; i <= m; i++)
    {
        ans = min({ans, f[n][i][0], f[n][i][1]});
    }
    cout << fixed << setprecision(2) << ans << endl;
}

signed main()
{
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);
    int test = 1;
    // cin >> test;
    for (int i = 1; i <= test ; i++)
    {
        solve(i);
    }
    return 0;
}

相关文章:

  • Unity ECS与MonoBehaviour混合架构开发实践指南
  • 深入解析SpringMVC中Http响应的实现机制
  • ASP.NET Core JWT认证与授权
  • rust学习笔记12-hashmap与1. 两数之和
  • 【C语言】值传递与指针传递,以及 `.` 和 `->` 操作详解
  • 设备预测性维护的6大应用场景
  • vue 安装依赖npm install过程中报错npm ERR! cb() never called!
  • 【电控笔记z69】电机选型-机械特性
  • deepseek本地集群部署调研
  • GCC RISCV 后端 -- cc1 入口
  • 批量插入对比-mysql-oracle-sqlserver
  • Three.js 新前端学习
  • tauri-plugin-shell插件将_blank的a标签用浏览器打开了,,,解决办法
  • android为第三方提供部分系统接口
  • Linux 系统不同分类的操作命令区别
  • Windows系统编程(八)线程同步
  • 【gRPC】Java高性能远程调用之gRPC详解
  • 大语言模型中温度参数(Temperature)的核心原理
  • 大学至今的反思与总结
  • python-leetcode-零钱兑换 II
  • 世卫大会连续九年拒绝涉台提案
  • 上博东馆常设陈列入选全国博物馆“十大精品”
  • 墨西哥海军一载两百余人帆船撞上纽约布鲁克林大桥,多人落水
  • 中国首颗地质行业小卫星“浙地一号”成功发射
  • 国宝归来!子弹库帛书二、三卷抵达北京
  • 霍步刚任辽宁沈阳市委书记