笔试-九宫格三阶积幻方
应用
给定9个不同数字,在九宫格实现三阶积幻方,即:九宫格的每行、每列、每条对角线的三个数之积相等。
输出所有满足要求的排列,并且做升序排序,即:
排列1:a1~a9,
排列2:b1~b9,
若a[i]<b[i],则排列1<排列2。
时间限制:2000ms、内存限制:512MB。
实现
strs = input("请输入9个不同数字,以空格分隔:").split()
nums = [int(i) for i in strs]
nums.sort()center = nums[4]
p = nums[0] * center * nums[8]
new = nums[0:4] + nums[5:9]A = []
for i in range(0, 3):r = []for j in range(0, 3):r.append(0)A.append(r)
A[1][1] = centerresult = []
# [
# [x1, x2, 0],
# [0, C, 0],
# [0, y2, y1]
# ]
for i in range(0, len(new)):A[0][0] = new[i]A[2][2] = new[len(new)-1-i]for j in range(0, len(new)):if new[j] != A[0][0]:if new[j] != A[2][2]:A[0][1] = new[j]A[2][1] = new[len(new)-1-j]x02 = p / A[0][0] / A[0][1]x20 = p / A[2][1] / A[2][2]x10 = p / A[0][0] / x20x12 = p / A[2][2] / x02if int(x02) in nums:if int(x20) in nums:if int(x10) in nums:if int(x12) in nums:A[0][2] = int(x02)A[2][0] = int(x20)A[1][0] = int(x10)A[1][2] = int(x12)# print(A)temp = []for m in range(0, 3):for n in range(0, 3):temp.append(A[m][n])# print(temp)result.append(temp)
# print(result)
for i in result:print(i)
请输入9个不同数字,以空格分隔:2 9 12 36 6 1 3 4 18
[2, 9, 12, 36, 6, 1, 3, 4, 18]
[2, 36, 3, 9, 6, 4, 12, 1, 18]
[3, 4, 18, 36, 6, 1, 2, 9, 12]
[3, 36, 2, 4, 6, 9, 18, 1, 12]
[12, 1, 18, 9, 6, 4, 2, 36, 3]
[12, 9, 2, 1, 6, 36, 18, 4, 3]
[18, 1, 12, 4, 6, 9, 3, 36, 2]
[18, 4, 3, 1, 6, 36, 12, 9, 2]请输入9个不同数字,以空格分隔:75 36 10 4 30 225 90 25 12
[10, 36, 75, 225, 30, 4, 12, 25, 90]
[10, 225, 12, 36, 30, 25, 75, 4, 90]
[12, 25, 90, 225, 30, 4, 10, 36, 75]
[12, 225, 10, 25, 30, 36, 90, 4, 75]
[75, 4, 90, 36, 30, 25, 10, 225, 12]
[75, 36, 10, 4, 30, 225, 90, 25, 12]
[90, 4, 75, 25, 30, 36, 12, 225, 10]
[90, 25, 12, 4, 30, 225, 75, 36, 10]