当前位置: 首页 > news >正文

做网站用模板便宜做网站怎么样

做网站用模板,便宜做网站怎么样,wordpress开启memcached,株洲的网站建设创新点 在不显著增加复杂度的情况下,显著增加感受野。可以替代传统的卷积模块对分解出的不同频率特征进行独立的卷积处理而且可以捕获频域信息 import pywt import pywt.data import torch from torch import nn from torch.autograd import Function import torc…

创新点

  • 在不显著增加复杂度的情况下,显著增加感受野。
  • 可以替代传统的卷积模块
  • 对分解出的不同频率特征进行独立的卷积处理而且可以捕获频域信息
import pywt
import pywt.data
import torch
from torch import nn
from torch.autograd import Function
import torch.nn.functional as F# 论文:Wavelet Convolutions for Large Receptive Fields
# 论文地址:https://arxiv.org/pdf/2407.05848def create_wavelet_filter(wave, in_size, out_size, type=torch.float):w = pywt.Wavelet(wave)dec_hi = torch.tensor(w.dec_hi[::-1], dtype=type)dec_lo = torch.tensor(w.dec_lo[::-1], dtype=type)dec_filters = torch.stack([dec_lo.unsqueeze(0) * dec_lo.unsqueeze(1),dec_lo.unsqueeze(0) * dec_hi.unsqueeze(1),dec_hi.unsqueeze(0) * dec_lo.unsqueeze(1),dec_hi.unsqueeze(0) * dec_hi.unsqueeze(1)], dim=0)dec_filters = dec_filters[:, None].repeat(in_size, 1, 1, 1)rec_hi = torch.tensor(w.rec_hi[::-1], dtype=type).flip(dims=[0])rec_lo = torch.tensor(w.rec_lo[::-1], dtype=type).flip(dims=[0])rec_filters = torch.stack([rec_lo.unsqueeze(0) * rec_lo.unsqueeze(1),rec_lo.unsqueeze(0) * rec_hi.unsqueeze(1),rec_hi.unsqueeze(0) * rec_lo.unsqueeze(1),rec_hi.unsqueeze(0) * rec_hi.unsqueeze(1)], dim=0)rec_filters = rec_filters[:, None].repeat(out_size, 1, 1, 1)return dec_filters, rec_filtersdef wavelet_transform(x, filters):b, c, h, w = x.shapepad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)x = F.conv2d(x, filters, stride=2, groups=c, padding=pad)x = x.reshape(b, c, 4, h // 2, w // 2)return xdef inverse_wavelet_transform(x, filters):b, c, _, h_half, w_half = x.shapepad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)x = x.reshape(b, c * 4, h_half, w_half)x = F.conv_transpose2d(x, filters, stride=2, groups=c, padding=pad)return xdef wavelet_transform_init(filters):class WaveletTransform(Function):@staticmethoddef forward(ctx, input):with torch.no_grad():x = wavelet_transform(input, filters)return x@staticmethoddef backward(ctx, grad_output):grad = inverse_wavelet_transform(grad_output, filters)return grad, Nonereturn WaveletTransform().applydef inverse_wavelet_transform_init(filters):class InverseWaveletTransform(Function):@staticmethoddef forward(ctx, input):with torch.no_grad():x = inverse_wavelet_transform(input, filters)return x@staticmethoddef backward(ctx, grad_output):grad = wavelet_transform(grad_output, filters)return grad, Nonereturn InverseWaveletTransform().applyclass WTConv2d(nn.Module):def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, bias=True, wt_levels=1, wt_type='db1'):super(WTConv2d, self).__init__()assert in_channels == out_channelsself.in_channels = in_channelsself.wt_levels = wt_levelsself.stride = strideself.dilation = 1self.wt_filter, self.iwt_filter = create_wavelet_filter(wt_type, in_channels, in_channels, torch.float)self.wt_filter = nn.Parameter(self.wt_filter, requires_grad=False)self.iwt_filter = nn.Parameter(self.iwt_filter, requires_grad=False)self.wt_function = wavelet_transform_init(self.wt_filter)self.iwt_function = inverse_wavelet_transform_init(self.iwt_filter)self.base_conv = nn.Conv2d(in_channels, in_channels, kernel_size, padding='same', stride=1, dilation=1,groups=in_channels, bias=bias)self.base_scale = _ScaleModule([1, in_channels, 1, 1])self.wavelet_convs = nn.ModuleList([nn.Conv2d(in_channels * 4, in_channels * 4, kernel_size, padding='same', stride=1, dilation=1,groups=in_channels * 4, bias=False) for _ in range(self.wt_levels)])self.wavelet_scale = nn.ModuleList([_ScaleModule([1, in_channels * 4, 1, 1], init_scale=0.1) for _ in range(self.wt_levels)])if self.stride > 1:self.stride_filter = nn.Parameter(torch.ones(in_channels, 1, 1, 1), requires_grad=False)self.do_stride = lambda x_in: F.conv2d(x_in, self.stride_filter, bias=None, stride=self.stride,groups=in_channels)else:self.do_stride = Nonedef forward(self, x):x_ll_in_levels = []x_h_in_levels = []shapes_in_levels = []curr_x_ll = xfor i in range(self.wt_levels):curr_shape = curr_x_ll.shapeshapes_in_levels.append(curr_shape)if (curr_shape[2] % 2 > 0) or (curr_shape[3] % 2 > 0):curr_pads = (0, curr_shape[3] % 2, 0, curr_shape[2] % 2)curr_x_ll = F.pad(curr_x_ll, curr_pads)curr_x = self.wt_function(curr_x_ll)curr_x_ll = curr_x[:, :, 0, :, :]shape_x = curr_x.shapecurr_x_tag = curr_x.reshape(shape_x[0], shape_x[1] * 4, shape_x[3], shape_x[4])curr_x_tag = self.wavelet_scale[i](self.wavelet_convs[i](curr_x_tag))curr_x_tag = curr_x_tag.reshape(shape_x)x_ll_in_levels.append(curr_x_tag[:, :, 0, :, :])x_h_in_levels.append(curr_x_tag[:, :, 1:4, :, :])next_x_ll = 0for i in range(self.wt_levels - 1, -1, -1):curr_x_ll = x_ll_in_levels.pop()curr_x_h = x_h_in_levels.pop()curr_shape = shapes_in_levels.pop()curr_x_ll = curr_x_ll + next_x_llcurr_x = torch.cat([curr_x_ll.unsqueeze(2), curr_x_h], dim=2)next_x_ll = self.iwt_function(curr_x)next_x_ll = next_x_ll[:, :, :curr_shape[2], :curr_shape[3]]x_tag = next_x_llassert len(x_ll_in_levels) == 0x = self.base_scale(self.base_conv(x))x = x + x_tagif self.do_stride is not None:x = self.do_stride(x)return xclass _ScaleModule(nn.Module):def __init__(self, dims, init_scale=1.0, init_bias=0):super(_ScaleModule, self).__init__()self.dims = dimsself.weight = nn.Parameter(torch.ones(*dims) * init_scale)self.bias = Nonedef forward(self, x):return torch.mul(self.weight, x)if __name__ == '__main__':block = WTConv2d(in_channels=3, out_channels=3)input = torch.rand(1, 3, 64, 64)output = block(input)print(input.size())print(output.size())
http://www.dtcms.com/a/492681.html

相关文章:

  • 网站负责人不是法人做繁体书的网站
  • 建设专业网站的价格企业门户网站解决方案
  • 静态网站模板 大气wordpress更新以后进不去
  • Qtday2
  • 佛山新网站建设特色公司网站建设介绍
  • 监控进程创建
  • 外贸箱包网站模板wordpress内存占用
  • 网站功能是什么重庆室内设计
  • 做特产的网站个人备案网站做盈利合法吗
  • 高明网站设计网站建设通知
  • 一个jsp做的购物小网站诚信档案建设网站首页
  • 做个人网站到哪里做中企动力销售好做吗
  • 一个网站做三个关键词wordpress左侧菜单
  • 物业管理 网站开发代做财务报表分析网站
  • 阳狮做网站网络软文怎么写
  • 配置资源管理
  • 北京便宜网站建设应用商店下载2022最新版
  • 响应式网站哪里做应届生去外包公司
  • 成都专业网站制作网站wordpress飘花特效
  • Java 中 equals 与 hashCode 的关系
  • 如何把网站的文字编辑网页设计与制作课程思政教案
  • WordPress网站封装app教程梨树县交通建设网站
  • 上海网站建设公司网可以兼职做设计的网站
  • 手机网站要域名吗网站建设与网页设计可行性分析报告
  • 怎么做网站教程简单做外国的网站卖东西
  • Kubernetes Pod控制器与配置资源管理
  • 农机网站模版wordpress建站好么
  • 【NestJS】NestJS三件套:校验、转换与文档生成,对比Django DRF
  • 长沙做网站的故事哈尔滨网站建设方案策划
  • 赣州建设公司网站新营销平台电商网站