当前位置: 首页 > news >正文

Opencv 图像形态学操作

3.1 形态学-腐蚀操作

img = cv2.imread('CSDN.png')
cv2.imshow('CSDN', img)
cv2.waitKey(0)
cv2.destroyAllWindows

在这里插入图片描述

如果腐蚀核的覆盖区域内的所有像素值都满足条件(阈值),则中心像素的值保持不变;如果有任何像素值不满足条件,则中心像素的值被设置为0(黑色)。

kernal = np.ones((3, 3), np.unit8)
# 传入3×3的腐蚀核,iterration表示腐蚀的操作次数
erosion = cv2.erode(img, kernal, iteration = 2)
cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

多余的细线条没有了。

pie = cv2.imread('pie.png')
cv2.imshow('pie', pie)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

接下来看随着迭代次数变多图像有什么变化

kernel = np.ones((30, 30), np.unit8)
erosion_1 = cv2.erode(pie, kernel, iterations = 1)
erosion_2 = cv2.erode(pie, kernel, iterations = 2)
erosion_3 = cv2.erode(pie, kernel, iterations = 3)
res = np.hstack((erosion_1, erosion_2, erosion_3))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

图像越来越瘦


3.2 形态学-膨胀操作

kernal = np.ones((3, 3), np.unit8)
dilation = cv2.dilate(erosion, kernal, iternations = 2)

cv2.imshow('dilation', dilation)
cv2.waitKey(0)
cv2.destroyAllWindows

在这里插入图片描述

可以看出腐蚀后的线条变细之后,膨胀操作又将线条变粗了

所以我们可以将图像中的噪声点和比结构元素小而且多余需要去除的部分先用腐蚀操作去除,然后再将我们需要的部分用膨胀操作变大。

pie = cv2.imread('pie.png')

kernel = np.ones((30, 30), np.unit8)
dilate_1 = cv2.dilate(pie, kernel, iterations = 1)
dilate_2 = cv2.dilate(pie, kernel, iterations = 2)
dilate_3 = cv2.dilate(pie, kernel, iterations = 3)
res = np.hstack((dilate_1, dilate_2, dilate_3))
cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

可以看出随膨胀次数操作变多,这个圆越来越肿。


3.3 开运算与闭运算

开运算:先腐蚀,再膨胀

用于去除小亮物体

img = cv2.imread('CSDN.png')
kernel = np.ones((5, 5), np.unit8)
opening = cv2.morphologyEX(img, cv2.MORPH_OPEN, kernel)

cv2.imshow('opening', opening)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述


闭运算:先膨胀,再腐蚀

用于去除小暗物体

img = cv2.imread('CSDN2.png')
cv2.imshow('CSDN2', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

img = cv2.imread('CSDN2.png')

kernel = np.ones((5, 5), np.unit8)
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

cv2.imshow('closing', closing)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述


3.4 梯度运算

梯度运算的结果等同于膨胀操作和腐蚀操作结果的差值,这个操作可以用来检测图像中的物体边缘。

gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernal)

cv2.imshow('gradient', gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述


3.5 礼帽与黑帽

礼帽 = 原始输入 - 开运算结果

img = cv2.imread('CSDN.png')
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
cv2.imshow('tophat', tophat)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

礼帽操作的效果是突出显示那些比结构元素小的物体

开运算之后,原本比结构元素小的物体处理掉,而比结构元素大的物体则几乎保持不变.

用原始输入减去开运算结果后,剩下的是比结构元素小的物体。


黑帽 = 闭运算 - 原始输入

img = cv2.imread('CSDN2.png')
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('blackhat', blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

img = cv2.imread('CSDN.png')
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('blackhat', blackhat)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

黑帽操作的效果是用于突出显示比结构元素小的暗物体或凹陷区域。

闭运算之后,原本比结构元素小的物体再膨胀过程中被完全填充,在腐蚀过程也无法恢复。比结构元素大的物体在膨胀又腐蚀后变化不大。

用闭运算结果减去原始输入后,留下来的则是原本的小暗物体的轮廓,只不过变成了亮的小物体。

相关文章:

  • 新闻网站的原创内容建设福建seo优化
  • 佛山网站建站建设上海百度公司地址
  • python 类似wordpress关键词排名关键词优化
  • 南山做棋牌网站建设常用的seo查询工具有哪些
  • 华艺网站开发口碑营销属于什么营销
  • 简单网站制作代码青岛关键词排名提升
  • VC++ MFC中 CTreeCtrl的自绘
  • 使用create_sql_query_chain工具根据自然语言问题生成SQL查询,踩坑版
  • 浙江大学《数据结构》第一章 笔记
  • 新时代,科技助力运动旅游开启新潮流
  • ESP32-S3 42引脚 语音控制模块、设备运转展示 GOOUUU TECH 果云科技S3-N16R8 控制舵机 LED开关 直流电机
  • 更换k8s容器运行时环境为docker
  • git 常用指令
  • dify镜像拉取不下来如何解决
  • 【分布式锁通关指南 05】通过redisson实现分布式锁
  • 【AIGC系列】5:视频生成模型数据处理和预训练流程介绍(Sora、MovieGen、HunyuanVideo)
  • 基于 Ray 构建的机器学习平台
  • 处理大数据的架构模式:Lambda 架构 和 Kappa 架构
  • 防火墙的智能选路与NAT实验
  • Qt 中 **QGraphicsView** 框架的总结
  • 【大模型系列篇】DeepSeek开源周,解锁AI黑科技
  • 【密码学实战】Java 实现 SM2 国密算法(签名带id、验签及 C1C3C2 加密解密)
  • 51页精品PPT | 农产品区块链溯源信息化平台整体解决方案
  • RK3588部署YOLOv8
  • 在 Vue 单文件组件(SFC)中,标签的显式关闭与隐式关闭有着重要的区别
  • QNAP威联通NAS第三方动态域名解析之docker部署DDNS GO