当前位置: 首页 > news >正文

11.【线性代数】——矩阵空间,秩1矩阵,小世界图

十一 矩阵空间,秩1矩阵,小世界图

空间:组成空间的元素的线性组合都在这个空间中。

1. 矩阵空间

举例:矩阵空间( M M M 所有3x3的矩阵)
M 3 ∗ 3 M_{3*3} M33的基
[ 1 0 0 0 0 0 0 0 0 ] , [ 0 1 0 0 0 0 0 0 0 ] , [ 0 0 1 0 0 0 0 0 0 ] [ 0 0 0 1 0 0 0 0 0 ] , [ 0 0 0 0 1 0 0 0 0 ] , [ 0 0 0 0 0 1 0 0 0 ] [ 0 0 0 0 0 0 1 0 0 ] , [ 0 0 0 0 0 0 0 1 0 ] , [ 0 0 0 0 0 0 0 0 1 ] \begin{bmatrix} 1&0&0\\ 0&0&0\\ 0&0&0 \end{bmatrix}, \begin{bmatrix} 0&1&0\\ 0&0&0\\ 0&0&0 \end{bmatrix}, \begin{bmatrix} 0&0&1\\ 0&0&0\\ 0&0&0 \end{bmatrix} \newline \begin{bmatrix} 0&0&0\\ 1&0&0\\ 0&0&0 \end{bmatrix}, \begin{bmatrix} 0&0&0\\ 0&1&0\\ 0&0&0 \end{bmatrix}, \begin{bmatrix} 0&0&0\\ 0&0&1\\ 0&0&0 \end{bmatrix} \newline \begin{bmatrix} 0&0&0\\ 0&0&0\\ 1&0&0 \end{bmatrix}, \begin{bmatrix} 0&0&0\\ 0&0&0\\ 0&1&0 \end{bmatrix}, \begin{bmatrix} 0&0&0\\ 0&0&0\\ 0&0&1 \end{bmatrix} 100000000 , 000100000 , 000000100 010000000 , 000010000 , 000000010 001000000 , 000001000 , 000000001
维度为9。

对称矩阵( S S S)的基,维度为6
[ 1 0 0 0 0 0 0 0 0 ] , [ 0 0 0 0 1 0 0 0 0 ] , [ 0 0 0 0 0 0 0 0 1 ] [ 0 1 0 1 0 0 0 0 0 ] , [ 0 0 1 0 0 0 1 0 0 ] , [ 0 0 0 0 0 1 0 1 0 ] \begin{bmatrix} 1&0&0\\ 0&0&0\\ 0&0&0 \end{bmatrix}, \begin{bmatrix} 0&0&0\\ 0&1&0\\ 0&0&0 \end{bmatrix}, \begin{bmatrix} 0&0&0\\ 0&0&0\\ 0&0&1 \end{bmatrix} \newline \begin{bmatrix} 0&1&0\\ 1&0&0\\ 0&0&0 \end{bmatrix}, \begin{bmatrix} 0&0&1\\ 0&0&0\\ 1&0&0 \end{bmatrix}, \begin{bmatrix} 0&0&0\\ 0&0&1\\ 0&1&0 \end{bmatrix} 100000000 , 000010000 , 000000001 010100000 , 001000100 , 000001010

上三角矩阵( U U U)的基,维度为6
[ 1 0 0 0 0 0 0 0 0 ] , [ 0 1 0 0 0 0 0 0 0 ] , [ 0 0 1 0 0 0 0 0 0 ] [ 0 0 0 0 1 0 0 0 0 ] , [ 0 0 0 0 0 1 0 0 0 ] , [ 0 0 0 0 0 0 0 0 1 ] \begin{bmatrix} 1&0&0\\ 0&0&0\\ 0&0&0 \end{bmatrix}, \begin{bmatrix} 0&1&0\\ 0&0&0\\ 0&0&0 \end{bmatrix}, \begin{bmatrix} 0&0&1\\ 0&0&0\\ 0&0&0 \end{bmatrix} \newline \begin{bmatrix} 0&0&0\\ 0&1&0\\ 0&0&0 \end{bmatrix}, \begin{bmatrix} 0&0&0\\ 0&0&1\\ 0&0&0 \end{bmatrix}, \begin{bmatrix} 0&0&0\\ 0&0&0\\ 0&0&1 \end{bmatrix} 100000000 , 000100000 , 000000100 000010000 , 000000010 , 000000001

交集 和 和集

交集: S ∩ U = 对角矩阵,维度是 3 S\cap U = 对角矩阵,维度是3 SU=对角矩阵,维度是3
和集: S + U = M , d i m ( S + U ) = 9 S + U = M, dim(S+U) = 9 S+U=M,dim(S+U)=9

d i m ( S + U ) + d i m ( S ∩ U ) = d i m ( S ) + d i m ( U ) dim(S+U) + dim(S \cap U) = dim(S) + dim(U) dim(S+U)+dim(SU)=dim(S)+dim(U)

2. 所有解空间

对于 d 2 y d x 2 + t = 0 , y = c o s x , s i n x ⏟ 解基 \dfrac{d^2y}{dx^2}+t =0, y=\underbrace{cosx,sinx}_{解基} dx2d2y+t=0,y=解基 cosx,sinx
解空间 y = c 1 c o s x + c 2 s i n x y=c_1cosx+c_2sinx y=c1cosx+c2sinx

3. r = 1 r=1 r=1的矩阵

[ 1 4 5 2 8 10 ] ⏟ A 2 ∗ 3 = [ 1 2 ] [ 1 4 5 ] \underbrace{\begin{bmatrix} 1&4&5\\ 2&8&10 \end{bmatrix}}_{A_{2*3}} = \begin{bmatrix} 1\\ 2 \end{bmatrix} \begin{bmatrix} 1&4&5 \end{bmatrix} A23 [1248510]=[12][145]
所有 r = 1 r=1 r=1的矩阵,可以拆成 A = u v T A=uv^T A=uvT

4. 题目

R 4 R^4 R4中, V = [ v 1 v 2 v 3 v 4 ] V=\begin{bmatrix} v_1\\ v_2\\ v_3\\ v_4 \end{bmatrix} V= v1v2v3v4 S = 所有 V 在 R 4 中,满足 v 1 + v 2 + v 3 + v 4 = 0 。 S 能否构成子空间呢? S=所有V在R^4中,满足v_1+v_2+v_3+v_4=0。S能否构成子空间呢? S=所有VR4中,满足v1+v2+v3+v4=0S能否构成子空间呢?

能。相当于 A V = 0 , S = N ( A ) AV=0,S=N(A) AV=0S=N(A)
[ 1 1 1 1 ] ⏟ A [ v 1 v 2 v 3 v 4 ] ⏟ V = 0 \underbrace{\begin{bmatrix} 1&1&1&1\\ \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} v_1\\ v_2\\ v_3\\ v_4 \end{bmatrix}}_{V}=0 A [1111]V v1v2v3v4 =0
A矩阵的秩为1, d i m ( N ( A ) ) = n − r = 4 − 1 = 3 dim(N(A)) = n -r = 4 - 1 = 3 dim(N(A))=nr=41=3
S的基为(等价于求AV=0的解空间)
[ − 1 1 0 0 ] , [ − 1 0 1 0 ] , [ − 1 0 0 1 ] \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix} 1100 , 1010 , 1001

5. 小世界图

图的定义 g r a p h = { n o d e s , e d g e s } graph=\{nodes, edges\} graph={nodes,edges}
在这里插入图片描述

相关文章:

  • 【时时三省】(C语言基础)字符型数据
  • Redis高可用部署:3台服务器打造哨兵集群
  • 环境会影响你的决策:K近邻算法(KNN)
  • 如何更好地利用Instagram的故事功能提升互动率?
  • AI大模型-提示工程学习笔记17—程序辅助语言模型
  • React实现无缝滚动轮播图
  • RBF神经网络+NSGAII多目标优化算法,工艺参数优化、工程设计优化(Matlab)
  • OpenAI发布GPT-4.5:功能非常特殊,推理很贵
  • 【STL】7.STL常用算法(2)
  • return和print
  • Virtual Box虚拟机安装苹果Monterey和big sur版本实践
  • Milvus高性能向量数据库与大模型结合
  • 【Spring Cloud Alibaba】基于Spring Boot 3.x 搭建教程
  • 如何查看日本药品审评报告?(PMDA官网查询步骤)
  • 北京大学mooc《实用python程序设计》第六章 笔记及测试答案
  • fastadmin 后台sku 插件
  • FreeRTOS-中断管理
  • 【Java环境】配置极简描述
  • 爬虫下载B站视频简单程序(仅供学习)
  • HVAC 设计:使用 Ansys Discovery 探索更好的设计
  • 群晖可以做网站服务器/seo排名快速
  • 广东省建设厅证件查询/网站关键词优化排名推荐
  • 在线设计logo图标/中山seo关键词
  • 成都网站logo设计/台州网络推广
  • 西部数码网站管理助手 没有d盘/网站生成app
  • 怎么做脱机网站/手机上可以创建网站吗