当前位置: 首页 > news >正文

潍坊网站建设电话岳麓书院网页制作

潍坊网站建设电话,岳麓书院网页制作,软文案例,网站建设公司 经营资质数据集准备 首先得准备好数据集,你的数据集至少包含images和labels,严格来说你的images应该包含训练集train、验证集val和测试集test,不过为了简单说明使用步骤,其中test可以不要,val和train可以用同一个,…

数据集准备

首先得准备好数据集,你的数据集至少包含images和labels,严格来说你的images应该包含训练集train、验证集val和测试集test,不过为了简单说明使用步骤,其中test可以不要,val和train可以用同一个,因此我这里只用了一个images

其中images装的是图片数据,labels装的是与图片一一对应同名的yolo格式txt,即类别号,经过归一化的中心x和y坐标以及宽和高

 

下载yolov5

到GitHub上下载整个项目的压缩包zip下来

 下来解压zip,把我们刚刚的数据集也放进去

再下载一个yolov5的预训练模型,我这里选择yolov5n.pt,下下来也放到解压文件夹中

然后用pycharm打开这个文件夹,看看哪里标红还差什么软件包没安装给安装上

配置yaml

先配置一下yolov5预训练模型的yaml,我下载的是yolov5n.pt模型,因此需要配置一下yolov5n.yaml,修改nc的数值为类别数目,我这里的数据集只有乌骨鸡和狮头鹅,因此改成2

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license# Parameters
nc: 2  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

然后开始配置数据集的yaml,可以复制coco128.yaml的内容进行修改,新建一个xxx.yaml,修改path为数据集路径,train为训练集的相对路径,val为验证机的相对路径,因为没有用上test,因此把它注释掉了,还有names也要修改为数据集的类别名

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: python train.py --data coco128.yaml
# parent
# ├── yolov5
# └── datasets
#     └── coco128  ← downloads here (7 MB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ikunData # dataset root dir
train: images # train images (relative to 'path') 128 images
val: images # val images (relative to 'path') 128 images
#test:  # test images (optional)# Classes
names:0: goose1: chicken

开始训练

然后准备开始训练,打开train.py,修改它的参数,主要是这三行代码需要修改,修改预训练模型文件的路径,配置文件的路径以及数据集配置文件的路径

    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5n.pt', help='initial weights path')parser.add_argument('--cfg', type=str, default='models/yolov5n.yaml', help='model.yaml path')parser.add_argument('--data', type=str, default=ROOT / 'ikunData.yaml', help='dataset.yaml path')

噢,还有训练的epochs数目,这个次数由你决定

    parser.add_argument('--epochs', type=int, default=30, help='total training epochs')

然后就可以开始运行train.py。

运行完了会生成一个runs文件夹,里面有训练出来的best.pt,和训练过程的记录

然后开始目标检测,准备好运行detect.py的参数,最基本的就是运行的权重文件,就是我们train出来的best.pt,还有要测试的数据路径

--weights runs/train/exp/weights/best.pt --source ikunData/images

把它写到运行配置中去

然后开始运行detect.py,运行完后会在runs里面生成detect文件夹,里面就有检测结果

你可能会发现有多个框框在同一个目标上,这时我们在detect.py上增加一个参数,这里是nms非极大值抑制,我们将IOU的阈值设置为0,再次运行detect.py

--weights runs/train/exp/weights/best.pt --source ikunData/images --iou-thres 0

 这次的效果要好一点

http://www.dtcms.com/a/417111.html

相关文章:

  • ps临摹网站网站开发企业排名
  • 想开发个网站微网站开发程序
  • 织梦网站栏目访问目录企业的网站公告怎么制作
  • 网站的经费预算国外社交网站设计欣赏
  • 如何看一个网站是谁做的.net 网站生成安装文件目录
  • 海口网站建设工作销售公司简介模板
  • 网络推广网站套餐米特号类似网站
  • 建设网站的南京网站制作步骤
  • 济南中京网站建设公司js开发安卓app
  • 网站建设与管理插图上海地图
  • 建设部网站上查不到资质的企业wordpress小说主题模板下载地址
  • 宁波江东区网站建设wordpress设置导航栏
  • 企业内部网络属于什么网络sem与seo
  • 网站群建设技术方案微信官网客户端
  • 企业建网站得多少钱展览中心网站建设
  • 电子商务网站建设策划书网站类型推广广告赚佣金
  • 南充网站建设服务商网站开发 男生
  • 保护动物网站建设策划书汕头专业网站建设公司
  • 网站建设 中企动力 东莞动漫网页设计版式
  • 德国 网站 后缀十大软件公司
  • 医疗器械外贸网站建设百度平台商家我的订单查询
  • 北京电商网站建设关键词优化排名易下拉软件
  • 什么是网页设计与网站建设给装修公司做推广的网站
  • edu网站一般谁做的网站开发方案书博客
  • jsp网站开发技术建设信用卡登录中心网站
  • 江苏省建设信息网站管理平台专门做钣金的网站
  • vs2015网站开发基础样式一级注册工程师
  • 上海免费模板建站app模板下载网站
  • 网站的后期维护自己怎么做东莞百度推广排名
  • tp框架做响应式网站网站建设公司的公司