当前位置: 首页 > news >正文

技术难度高的网站开发广告网站设计哪家快

技术难度高的网站开发,广告网站设计哪家快,seo推广平台,视频网站后台模板一、题目内容 题目要求根据二叉树的中序遍历序列和后序遍历序列来重建二叉树。具体来说,我们需要利用中序遍历序列和后序遍历序列的特点,通过递归的方法逐步构建出完整的二叉树。 中序遍历序列的特点是:左子树 -> 根节点 -> 右子树。后…

一、题目内容

题目要求根据二叉树的中序遍历序列和后序遍历序列来重建二叉树。具体来说,我们需要利用中序遍历序列和后序遍历序列的特点,通过递归的方法逐步构建出完整的二叉树。

中序遍历序列的特点是:左子树 -> 根节点 -> 右子树。后序遍历序列的特点是:左子树 -> 右子树 -> 根节点。因此,后序遍历的最后一个元素一定是根节点。通过这个根节点,我们可以在中序遍历序列中找到左子树和右子树的分界点,从而递归地构建左右子树。

我们需要声明一些变量来记录当前的遍历范围和递归的状态。在递归过程中,我们需要不断更新这些变量的值,以确保正确地构建每个子树。

二、题目分析

输入和输出

输入:

  • 两个整数数组 inorderpostorder

    • inorder:二叉树的中序遍历序列。

    • postorder:二叉树的后序遍历序列。

输出:

  • 构建好的二叉树的根节点(TreeNode 类型)。

递归函数 traversal 的逻辑

参数:

  • inorder:当前子树的中序遍历序列。

  • postorder:当前子树的后序遍历序列。

逻辑:

  1. 如果 postorder 为空,说明当前子树为空,返回 NULL

  2. 获取当前子树的根节点值 rootvalue,即 postorder 的最后一个元素。

  3. 创建根节点 root,值为 rootvalue

  4. 如果 postorder 只有一个元素,说明当前子树只有一个节点,直接返回 root

  5. 在中序遍历中找到根节点的位置 mid

  6. 根据 mid,将中序遍历序列划分为左子树和右子树。

  7. 根据左子树的大小,将后序遍历序列划分为左子树和右子树。

  8. 递归构建左子树和右子树。

  9. 返回根节点 root

三、代码解答

1. C++代码

class Solution {
public:// 主函数,用于调用递归函数并返回结果TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (postorder.empty() || inorder.empty()) return NULL;return traversal(inorder, postorder);}private:// 辅助递归函数TreeNode* traversal(vector<int>& inorder, vector<int>& postorder) {// 如果 postorder 为空,说明当前子树为空if (postorder.empty()) return NULL;// 获取当前子树的根节点值int rootvalue = postorder.back();TreeNode* root = new TreeNode(rootvalue);// 如果 postorder 只有一个元素,说明当前子树只有一个节点if (postorder.size() == 1) return root;// 在中序遍历中找到根节点的位置auto it = find(inorder.begin(), inorder.end(), rootvalue);int mid = distance(inorder.begin(), it);// 根据 mid,将中序遍历序列划分为左子树和右子树vector<int> leftInorder(inorder.begin(), inorder.begin() + mid);vector<int> rightInorder(inorder.begin() + mid + 1, inorder.end());// 根据左子树的大小,将后序遍历序列划分为左子树和右子树postorder.pop_back(); // 移除当前根节点vector<int> leftpostorder(postorder.begin(), postorder.begin() + leftInorder.size());vector<int> rightpostorder(postorder.begin() + leftInorder.size(), postorder.end());// 递归构建左子树和右子树root->left = traversal(leftInorder, leftpostorder);root->right = traversal(rightInorder, rightpostorder);return root;}
};

详细注释

成员变量

  • TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder):主函数,用于调用递归函数并返回结果。

  • TreeNode* traversal(vector<int>& inorder, vector<int>& postorder):辅助递归函数,用于构建当前子树。

辅助递归函数 traversal

TreeNode* traversal(vector<int>& inorder, vector<int>& postorder) {// 如果 postorder 为空,说明当前子树为空if (postorder.empty()) return NULL;// 获取当前子树的根节点值int rootvalue = postorder.back();TreeNode* root = new TreeNode(rootvalue);// 如果 postorder 只有一个元素,说明当前子树只有一个节点if (postorder.size() == 1) return root;// 在中序遍历中找到根节点的位置auto it = find(inorder.begin(), inorder.end(), rootvalue);int mid = distance(inorder.begin(), it);// 根据 mid,将中序遍历序列划分为左子树和右子树vector<int> leftInorder(inorder.begin(), inorder.begin() + mid);vector<int> rightInorder(inorder.begin() + mid + 1, inorder.end());// 根据左子树的大小,将后序遍历序列划分为左子树和右子树postorder.pop_back(); // 移除当前根节点vector<int> leftpostorder(postorder.begin(), postorder.begin() + leftInorder.size());vector<int> rightpostorder(postorder.begin() + leftInorder.size(), postorder.end());// 递归构建左子树和右子树root->left = traversal(leftInorder, leftpostorder);root->right = traversal(rightInorder, rightpostorder);return root;
}
  • 空子树检查: 如果 postorder 为空,说明当前子树为空,返回 NULL

  • 获取根节点值: 从后序遍历中获取当前子树的根节点值 rootvalue,即 postorder.back()

  • 创建根节点: 创建根节点 root,值为 rootvalue

  • 单节点子树检查: 如果 postorder 只有一个元素,说明当前子树只有一个节点,直接返回 root

  • 找到根节点在中序遍历中的位置: 在中序遍历中找到根节点的位置 mid

  • 划分中序遍历序列: 根据 mid,将中序遍历序列划分为左子树和右子树。

  • 划分后序遍历序列: 根据左子树的大小,将后序遍历序列划分为左子树和右子树。

  • 递归构建左子树和右子树: 递归调用 traversal 函数构建左子树和右子树。

  • 返回根节点: 返回构建好的根节点 root

主函数 buildTree

TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (postorder.empty() || inorder.empty()) return NULL;return traversal(inorder, postorder);
}
  • 调用递归函数: 从根节点开始,调用 traversal 函数,传入整个中序遍历和后序遍历的序列。

  • 返回结果: 返回构建好的二叉树的根节点。

回溯和递归的详细解释

递归

递归是一种函数调用自身的方法,用于解决复杂问题。在本题中,递归用于逐步构建二叉树的每个子树。

每次递归调用时,我们通过后序遍历的最后一个元素确定当前子树的根节点,并在中序遍历中找到该根节点的位置,从而确定左子树和右子树的范围。

递归调用的终止条件是当前子树为空(postorder.empty())。

回溯

回溯是一种在递归调用返回后恢复状态的机制。

在本题中,每次递归调用返回后,我们通过更新 postorder 和边界索引,恢复到当前子树的状态。这样可以确保每次递归返回后,状态正确,不会影响后续的递归调用。

示例

假设中序遍历序列 inorder = [4, 2, 5, 1, 6, 3, 7],后序遍历序列 postorder = [4, 5, 2, 6, 7, 3, 1]

http://www.dtcms.com/a/397336.html

相关文章:

  • 东莞高端网站定制国外点击链接推广平台
  • 青海省网站建设公司哪家好网站的结构与布局优化
  • 网站建设哪韩国男女直接做的视频网站
  • 网站建设外包发展情况学校网站建设与管理办法
  • 手机建站教程千锋教育总部在哪里
  • 网站建设新闻如何更新简述企业注册的流程
  • 北京环保网站建设安装wordpress没有框架
  • 闵行区 网站制作外贸网站如何seo
  • 如何选择企业网站建设免费linux云服务器
  • 快站教程网站系统繁忙怎么办
  • 大连哪家做网站比较好哈尔滨网站外包
  • 效果好的网站建设公郑州网页网站制作
  • 织梦iis7搭建网站教程蓝色管理系统网站模版
  • 视频网站开发步骤上海企业网上公示系统
  • 装饰公司响应式网站建设案例太原市建设厅官方网站
  • 在线原型设计网站网站建设收费标准教程
  • 为什么做电影网站没有流量提供扬中网站建设
  • 临平网站建设微信公众号预约
  • 沈阳网站建设招标公司网络推广经验交流
  • 成品门户网站源码免费怎样做网站链接
  • 深圳建设管理中心网站首页怎么下载浏览器上的视频
  • 宜和购物电视购物官方网站科技感十足的网站
  • 建设网站需要体现的流程有哪些内容下载软件的网站哪个好
  • 网站多久营销型网站建设开发价格
  • 广告网站留电话整人wp资源网主题
  • 电脑上做网站的软件哪个网站建网页比较好
  • 好看的手机网站推荐网站建设平台方案设计
  • 搭建公司网站教程校园推广
  • 网站站内内链建设制作网页查询系统
  • 有服务器有域名如何做网站wordpress 十万条信息