【OpenGL】texture 纹理
参考文章:https://www.opengl-tutorial.org/cn/beginners-tutorials/tutorial-5-a-textured-cube/
一、UV坐标
1.1 关于UV坐标
给模型贴纹理时,我们需要通过UV坐标来告诉OpenGL用哪块图像填充三角形。
每个顶点除了位置坐标外还有两个浮点数坐标:U和V。这两个坐标用于访问纹理,如下图所示:
注意观察纹理是怎样在三角形上扭曲的。
1.2 加载bmp图片
我们可以使用QT库自带的QImage来读取bmp图片,而不需要自己手动解析
假设路径下存在.bmp格式的图像,可以这样加载:
QString bmp_path = "/Users/liuhang/CLionProjects/opengl-learning/resource/uvtemplate-cube.bmp";
QImage texture_image(bmp_path);
if (texture_image.isNull()) { std::cerr << bmp_path .toStdString() << "路径错误或文件损坏!" << std::endl; return 0;
}
这里需要注意的是,QT的坐标系世纪上与opengl坐标系是镜像的关系,例如openGL坐标系的原点上左下角,但是QT实际上是左上角,因此可以使用mirrored
函数进行反转,并且转换格式到8位的RGB格式
// 转换为RGB格式并垂直翻转(OpenGL坐标原点在左下角)
QImage gl_image = texture_image.mirrored().convertToFormat(QImage::Format_RGB888);
二、在openGL中使用纹理
2.1 片段着色器
先来看看片段着色器。大部分代码一目了然:
#version 330 core// Interpolated values from the vertex shaders
in vec2 UV;// Ouput data
out vec3 color;// Values that stay constant for the whole mesh.
uniform sampler2D myTextureSampler;void main(){// Output color = color of the texture at the specified UVcolor = texture( myTextureSampler, UV ).rgb;
}
注意三点:
- 片段着色器需要UV坐标。看似合情合理。
- 同时也需要一个”Sampler2D”来获知要加载哪一个纹理(同一个着色器中可以访问多个纹理)
- 最后一点,用texture()访问纹理,该方法返回一个(R,G,B,A)的vec4变量。马上就会了解到分量A。
2.2 顶点着色器
顶点着色器也很简单,只需把UV坐标传给片段着色器:
#version 330 core// Input vertex data, different for all executions of this shader.
layout(location = 0) in vec3 vertexPosition_modelspace;
layout(location = 1) in vec2 vertexUV;// Output data ; will be interpolated for each fragment.
out vec2 UV;// Values that stay constant for the whole mesh.
uniform mat4 MVP;void main(){// Output position of the vertex, in clip space : MVP * positiongl_Position = MVP * vec4(vertexPosition_modelspace,1);// UV of the vertex. No special space for this one.UV = vertexUV;
}
三、给正方体添加纹理
还记得第四课中的”layout(location = 1) in vec2 vertexUV”吗?我们得在这儿把相同的事情再做一遍,但这次的缓冲中放的不是(R,G,B)三元组,而是(U,V)数对。
// Two UV coordinatesfor each vertex. They were created with Blender. You'll learn shortly how to do this yourself.
static const GLfloat g_uv_buffer_data[] = {0.000059f, 1.0f-0.000004f,0.000103f, 1.0f-0.336048f,0.335973f, 1.0f-0.335903f,1.000023f, 1.0f-0.000013f,0.667979f, 1.0f-0.335851f,0.999958f, 1.0f-0.336064f,0.667979f, 1.0f-0.335851f,0.336024f, 1.0f-0.671877f,0.667969f, 1.0f-0.671889f,1.000023f, 1.0f-0.000013f,0.668104f, 1.0f-0.000013f,0.667979f, 1.0f-0.335851f,0.000059f, 1.0f-0.000004f,0.335973f, 1.0f-0.335903f,0.336098f, 1.0f-0.000071f,0.667979f, 1.0f-0.335851f,0.335973f, 1.0f-0.335903f,0.336024f, 1.0f-0.671877f,1.000004f, 1.0f-0.671847f,0.999958f, 1.0f-0.336064f,0.667979f, 1.0f-0.335851f,0.668104f, 1.0f-0.000013f,0.335973f, 1.0f-0.335903f,0.667979f, 1.0f-0.335851f,0.335973f, 1.0f-0.335903f,0.668104f, 1.0f-0.000013f,0.336098f, 1.0f-0.000071f,0.000103f, 1.0f-0.336048f,0.000004f, 1.0f-0.671870f,0.336024f, 1.0f-0.671877f,0.000103f, 1.0f-0.336048f,0.336024f, 1.0f-0.671877f,0.335973f, 1.0f-0.335903f,0.667969f, 1.0f-0.671889f,1.000004f, 1.0f-0.671847f,0.667979f, 1.0f-0.335851f
};
上述UV坐标对应于下面的模型:
其余的就很清楚了。创建一个缓冲、绑定、填充、配置,像往常一样绘制顶点缓冲对象。要注意把glVertexAttribPointer的第二个参数(大小)3改成2。
具体来说,在initilizeGL
函数中添加下面的代码:
//===============顶点纹理数据vbo===============
glGenBuffers(1,&texture_buffer_id);
glBindBuffer(GL_ARRAY_BUFFER,texture_buffer_id);
glBufferData(GL_ARRAY_BUFFER,sizeof(vertex_texture_data_triangle),vertex_texture_data_triangle,GL_STATIC_DRAW);
glBufferData(GL_ARRAY_BUFFER,sizeof(vertex_texture_data_cube),vertex_texture_data_cube,GL_STATIC_DRAW);
在paintGL
中重新绑定VBO,然后激活、描述 layout = 1的uv坐标,传入uv数据
//加载layout = 1
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER,texture_buffer_id);
glVertexAttribPointer(1,2,GL_FLOAT,GL_FALSE,0,nullptr);
我们从bmp图片加载纹理,具体的加载逻辑代码如下,关于纹理过滤这一部分,下面讲解:
GLuint MyGLWidget::loadTexture() {
// QString bmp_path = "/Users/liuhang/CLionProjects/opengl-learning/resource/uvtemplate.bmp"; QString bmp_path = "/Users/liuhang/CLionProjects/opengl-learning/resource/uvtemplate-cube.bmp"; QImage texture_image(bmp_path); if (texture_image.isNull()) { std::cerr << bmp_path .toStdString() << "路径错误或文件损坏!" << std::endl; return 0; } // 转换为RGB格式并垂直翻转(OpenGL坐标原点在左下角) QImage gl_image = texture_image.mirrored().convertToFormat(QImage::Format_RGB888); GLuint textureID; glGenTextures(1, &textureID); glBindTexture(GL_TEXTURE_2D, textureID); // 上传纹理数据 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, gl_image.width(), gl_image.height(), 0, GL_RGB, GL_UNSIGNED_BYTE, gl_image.bits()); // 设置纹理参数 //===============设置纹理过滤=============== #if 0 //GL_NEAREST:最近像素点采样 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);#endif #if 0 //GL_LINEAR:线性过滤 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);#endif #if 1 //GL_MIPMAP_NEAREST: mipmap glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR_MIPMAP_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); //生成mipmap,多加这一行 glGenerateMipmap(GL_TEXTURE_2D);
#endif //解绑 glBindTexture(GL_TEXTURE_2D, 0); // 解绑 return textureID;
}
结果如下:
放大后,可以发现边缘像素非常粗糙,这通常和纹理过滤有关,下面我们来介绍
四、纹理过滤和mipmap
正如在上面截图中看到的,纹理质量不是很好。这是因为在loadBMP_custom函数中,有如下两行代码:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
这意味着在片段着色器中,texture()将直接提取位于(U,V)坐标的纹素(texel)。
4.1 线性过滤(Linear filtering)
若采用线性过滤。texture()会查看周围的纹素,然后根据UV坐标距离各纹素中心的距离来混合颜色。这就避免了前面看到的锯齿状边缘。
线性过滤可以显著改善纹理质量,应用的也很多。但若想获得更高质量的纹理,可以采用各向异性过滤,不过速度有些慢。
4.2 各向异性过滤(Anisotropic filtering)
这种方法逼近了真正片断中的纹素区块。例如下图中稍稍旋转了的纹理,各向异性过滤将沿蓝色矩形框的主方向,作一定数量的采样(即所谓的”各向异性层级”),计算出其内的颜色。
4.3 Mipmaps
线性过滤和各向异性过滤都存在一个共同的问题。那就是如果从远处观察纹理,只对4个纹素作混合显得不够。实际上,如果3D模型位于很远的地方,屏幕上只看得见一个片断(像素),那计算平均值得出最终颜色值时,图像所有的纹素都应该考虑在内。很显然,这种做法没有考虑性能问题。撇开两种过滤方法不谈,这里要介绍的是mipmap技术:
- 一开始,把图像缩小到原来的1/2,然后依次缩小,直到图像只有1x1大小(应该是图像所有纹素的平均值)
- 绘制模型时,根据纹素大小选择合适的mipmap。
- 可以选用nearest、linear、anisotropic等任意一种滤波方式来对mipmap采样。
- 要想效果更好,可以对两个mipmap采样然后混合,得出结果。
好在这个比较简单,OpenGL都帮我们做好了,只需一个简单的调用:
// When MAGnifying the image (no bigger mipmap available), use LINEAR filtering
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// When MINifying the image, use a LINEAR blend of two mipmaps, each filtered LINEARLY too
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
// Generate mipmaps, by the way.
glGenerateMipmap(GL_TEXTURE_2D);
五、压缩纹理
学到这儿,您可能会问:那JPEG格式的纹理又该怎样加载呢?
简答:用不着考虑这些文件格式,您还有更好的选择。
5.1 创建压缩纹理
- 下载The Compressonator,一款ATI工具
- 用它加载一个二次幂纹理
- 将其压缩成DXT1、DXT3或DXT5格式(这些格式之间的差别请参考Wikipedia):
- 生成mipmap,这样就不用在运行时生成mipmap了。
- 导出为.DDS文件。
至此,图像已压缩为可被GPU直接使用的格式。在着色中随时调用texture()均可以实时解压。这一过程看似很慢,但由于它节省了很多内存空间,传输的数据量就少了。传输内存数据开销很大;纹理解压缩却几乎不耗时(有专门的硬件负责此事)。一般情况下,采用压缩纹理可使性能提升20%。
5.2 使用压缩纹理
来看看怎样加载压缩纹理。这和加载BMP的代码很相似,只不过文件头的结构不一样:
GLuint loadDDS(const char * imagepath){ unsigned char header[124]; FILE *fp; /* try to open the file */ fp = fopen(imagepath, "rb"); if (fp == NULL){ printf("%s could not be opened. Are you in the right directory ? Don't forget to read the FAQ !\n", imagepath); getchar(); return 0; } /* verify the type of file */ char filecode[4]; fread(filecode, 1, 4, fp); if (strncmp(filecode, "DDS ", 4) != 0) { fclose(fp); return 0; } /* get the surface desc */ fread(&header, 124, 1, fp); unsigned int height = *(unsigned int*)&(header[8 ]); unsigned int width = *(unsigned int*)&(header[12]); unsigned int linearSize = *(unsigned int*)&(header[16]); unsigned int mipMapCount = *(unsigned int*)&(header[24]); unsigned int fourCC = *(unsigned int*)&(header[80]); unsigned char * buffer; unsigned int bufsize; /* how big is it going to be including all mipmaps? */ bufsize = mipMapCount > 1 ? linearSize * 2 : linearSize; buffer = (unsigned char*)malloc(bufsize * sizeof(unsigned char)); fread(buffer, 1, bufsize, fp); /* close the file pointer */ fclose(fp); unsigned int components = (fourCC == FOURCC_DXT1) ? 3 : 4; unsigned int format; switch(fourCC) { case FOURCC_DXT1: format = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; break; case FOURCC_DXT3: format = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; break; case FOURCC_DXT5: format = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; break; default: free(buffer); return 0; } // Create one OpenGL texture GLuint textureID; glGenTextures(1, &textureID); // "Bind" the newly created texture : all future texture functions will modify this texture glBindTexture(GL_TEXTURE_2D, textureID); glPixelStorei(GL_UNPACK_ALIGNMENT,1); unsigned int blockSize = (format == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT) ? 8 : 16; unsigned int offset = 0; /* load the mipmaps */ for (unsigned int level = 0; level < mipMapCount && (width || height); ++level) { unsigned int size = ((width+3)/4)*((height+3)/4)*blockSize; glCompressedTexImage2D(GL_TEXTURE_2D, level, format, width, height, 0, size, buffer + offset); offset += size; width /= 2; height /= 2; // Deal with Non-Power-Of-Two textures. This code is not included in the webpage to reduce clutter. if(width < 1) width = 1; if(height < 1) height = 1; } free(buffer); return textureID; }
加载压缩纹理得到的纹理,和之前一样,在创建、绑定好的纹理单元上传即可
六、完整代码
my_glwidget.h
//
// Created by liuhang on 2025/9/16.
// #ifndef OPENGL_LEARNING_MY_GLWIDGET_H
#define OPENGL_LEARNING_MY_GLWIDGET_H #include<QOpenGLWidget>
#include<QOpenGLFunctions>
#include<QMatrix4x4>
#include<QTimer> class MyGLWidget : public QOpenGLWidget,protected QOpenGLFunctions
{ Q_OBJECT
public: explicit MyGLWidget(QWidget* parent = nullptr); ~MyGLWidget() override; protected: void initializeGL() override; void paintGL() override; void resizeGL(int w,int h) override; void doMVP();
private: void loadShader(std::string const& vertex_shader_path,std::string const& fragment_shader_path); GLuint loadTexture(); private: GLuint vertex_array_id; GLuint vertex_buffer_id; GLuint texture_buffer_id; GLuint vertex_shader_id; GLuint fragment_shader_id; GLuint shader_program_id; GLint uniform_model_matrix_location; GLint uniform_view_matrix_location; GLint uniform_projection_matrix_location; GLint uniform_texture_sampler_location; QImage texture_image; GLuint texture_id; //MVP矩阵 QVector3D camera_pos = {4,4,2}; QVector3D look_dir = {0,0,0}; QVector3D up_dir = {0,1,0}; float angle = 45; float aspect; //距离相机的位置,渲染范围:0.1-100 float near_plane = 0.1f; float far_plane = 100.f;
}; #endif //OPENGL_LEARNING_MY_GLWIDGET_H
my_glwidget.cpp
//
// Created by liuhang on 2025/9/16.
// #include "my_glwidget.h"
#include<string>
#include<fstream>
#include<sstream>
#include<iostream>
#include<filesystem>
#include<QThread>
#include<QImage>
#include<QCursor> // Our vertices. Three consecutive floats give a 3D vertex; Three consecutive vertices give a triangle.
// A cube has 6 faces with 2 triangles each, so this makes 6*2=12 triangles, and 12*3 vertices
static const GLfloat vertex_buffer_data_cube[] = { -1.0f,-1.0f,-1.0f, // triangle 1 : begin -1.0f,-1.0f, 1.0f, -1.0f, 1.0f, 1.0f, // triangle 1 : end 1.0f, 1.0f,-1.0f, // triangle 2 : begin -1.0f,-1.0f,-1.0f, -1.0f, 1.0f,-1.0f, // triangle 2 : end 1.0f,-1.0f, 1.0f, -1.0f,-1.0f,-1.0f, 1.0f,-1.0f,-1.0f, 1.0f, 1.0f,-1.0f, 1.0f,-1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f,-1.0f, 1.0f,-1.0f, 1.0f, -1.0f,-1.0f, 1.0f, -1.0f,-1.0f,-1.0f, -1.0f, 1.0f, 1.0f, -1.0f,-1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,-1.0f,-1.0f, 1.0f, 1.0f,-1.0f, 1.0f,-1.0f,-1.0f, 1.0f, 1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,-1.0f, -1.0f, 1.0f,-1.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f,-1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 1.0f,-1.0f, 1.0f
}; static const GLfloat vertex_texture_data_cube[] = { 0.000059f, 1.0f-0.000004f, 0.000103f, 1.0f-0.336048f, 0.335973f, 1.0f-0.335903f, 1.000023f, 1.0f-0.000013f, 0.667979f, 1.0f-0.335851f, 0.999958f, 1.0f-0.336064f, 0.667979f, 1.0f-0.335851f, 0.336024f, 1.0f-0.671877f, 0.667969f, 1.0f-0.671889f, 1.000023f, 1.0f-0.000013f, 0.668104f, 1.0f-0.000013f, 0.667979f, 1.0f-0.335851f, 0.000059f, 1.0f-0.000004f, 0.335973f, 1.0f-0.335903f, 0.336098f, 1.0f-0.000071f, 0.667979f, 1.0f-0.335851f, 0.335973f, 1.0f-0.335903f, 0.336024f, 1.0f-0.671877f, 1.000004f, 1.0f-0.671847f, 0.999958f, 1.0f-0.336064f, 0.667979f, 1.0f-0.335851f, 0.668104f, 1.0f-0.000013f, 0.335973f, 1.0f-0.335903f, 0.667979f, 1.0f-0.335851f, 0.335973f, 1.0f-0.335903f, 0.668104f, 1.0f-0.000013f, 0.336098f, 1.0f-0.000071f, 0.000103f, 1.0f-0.336048f, 0.000004f, 1.0f-0.671870f, 0.336024f, 1.0f-0.671877f, 0.000103f, 1.0f-0.336048f, 0.336024f, 1.0f-0.671877f, 0.335973f, 1.0f-0.335903f, 0.667969f, 1.0f-0.671889f, 1.000004f, 1.0f-0.671847f, 0.667979f, 1.0f-0.335851f
}; static const float vertex_buffer_data_triangle[] ={ -1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f
}; static const GLfloat vertex_texture_data_triangle[] = { 0.0f,0.0f, 1.0f,0.0f, 0.5,1.0f
}; MyGLWidget::MyGLWidget(QWidget *parent): QOpenGLWidget(parent)
{
#if 0 timer.setInterval(1); connect(&timer,&QTimer::timeout,this,[this](){ static float count = 0; count+= 0.01f; global_i = std::fabs(sin(count)); this->update(); timer.setInterval(1); timer.start(); });
#endif #if 0 timer.setInterval(1); connect(&timer,&QTimer::timeout,this,[this](){ global_i+= 1; if(fabs(global_i - 100) < 0.1f){ global_i = 0; } this->update(); timer.setInterval(1); timer.start(); }); timer.start();#endif aspect = this->width() * 1.0f / this->height();
} MyGLWidget::~MyGLWidget() { makeCurrent(); //vao glDeleteVertexArrays(1,&vertex_array_id); //坐标顶点vbo glDeleteBuffers(1,&vertex_buffer_id); //纹理顶点vbo glDeleteBuffers(1,&texture_buffer_id); //shader_program glDeleteShader(shader_program_id); //纹理单元 glDeleteTextures(0,&texture_id); doneCurrent();
} void MyGLWidget::initializeGL() { initializeOpenGLFunctions(); glClearColor(0.2f,0.3f,0.3f,1.0f); //启动深度测试 glEnable(GL_DEPTH_TEST); // Accept fragment if it closer to the camera than the former one glDepthFunc(GL_LESS); //加载着色器 loadShader("/Users/liuhang/CLionProjects/opengl-learning/opengl1-5-cube-texture/shader/shader.vert", "/Users/liuhang/CLionProjects/opengl-learning/opengl1-5-cube-texture/shader/shader.frag"); //===============vao=============== glGenVertexArrays(1,&vertex_array_id); glBindVertexArray(vertex_array_id); //===============顶点坐标数据vbo=============== glGenBuffers(1,&vertex_buffer_id); glBindBuffer(GL_ARRAY_BUFFER,vertex_buffer_id);
// glBufferData(GL_ARRAY_BUFFER,sizeof(vertex_buffer_data_triangle),vertex_buffer_data_triangle,GL_STATIC_DRAW); glBufferData(GL_ARRAY_BUFFER,sizeof(vertex_buffer_data_cube),vertex_buffer_data_cube,GL_STATIC_DRAW); //===============顶点纹理数据vbo=============== glGenBuffers(1,&texture_buffer_id); glBindBuffer(GL_ARRAY_BUFFER,texture_buffer_id); glBufferData(GL_ARRAY_BUFFER,sizeof(vertex_texture_data_triangle),vertex_texture_data_triangle,GL_STATIC_DRAW); glBufferData(GL_ARRAY_BUFFER,sizeof(vertex_texture_data_cube),vertex_texture_data_cube,GL_STATIC_DRAW); //===============纹理单元=============== texture_id = loadTexture(); uniform_texture_sampler_location = glGetUniformLocation(shader_program_id,"texture_sampler"); //解绑vao glBindVertexArray(0); } void MyGLWidget::paintGL() { //清除颜色缓存和深度缓存 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glBindVertexArray(vertex_array_id); //使用着色器程序 glUseProgram(shader_program_id); //上传MVP矩阵 doMVP(); //绑定vao glBindVertexArray(vertex_array_id); //加载layout = 0 glEnableVertexAttribArray(0); glBindBuffer(GL_ARRAY_BUFFER,vertex_buffer_id); glVertexAttribPointer(0,3,GL_FLOAT,GL_FALSE,0,nullptr); //加载layout = 1 glEnableVertexAttribArray(1); glBindBuffer(GL_ARRAY_BUFFER,texture_buffer_id); glVertexAttribPointer(1,2,GL_FLOAT,GL_FALSE,0,nullptr); //绑定纹理单元0 glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D,texture_id); glUniform1i(uniform_texture_sampler_location, 0); //绘制
// glDrawArrays(GL_TRIANGLES,0,3); glDrawArrays(GL_TRIANGLES,0,3*12); //解绑layout = 0 glDisableVertexAttribArray(0); //解绑layout = 1 glDisableVertexAttribArray(1);
} void MyGLWidget::resizeGL(int w, int h) { glViewport(0, 0, w, h);
} void MyGLWidget::loadShader(std::string const& vertex_shader_path,std::string const& fragment_shader_path) { //创建顶点着色器 vertex_shader_id = glCreateShader(GL_VERTEX_SHADER); //读取shader.vert std::string vertex_shader_code; std::ifstream vertex_shader_stream(vertex_shader_path,std::ios::in); if(vertex_shader_stream.is_open()){ std::stringstream ss; ss << vertex_shader_stream.rdbuf(); vertex_shader_code = ss.str(); vertex_shader_stream.close(); } else{ std::cout << "current path = " << std::filesystem::current_path() << std::endl; if (!std::filesystem::exists(vertex_shader_path)) { std::cerr << "File not found: " << vertex_shader_path << std::endl; } std::cerr << "read vertex_shader fail!" << std::endl; return; } //加载vertex着色器程序代码 const char* vertex_shader_code_pointer = vertex_shader_code.c_str(); glShaderSource(vertex_shader_id,1,&vertex_shader_code_pointer,nullptr); //编译vertex shader glCompileShader(vertex_shader_id); //查看vertex编译结果 GLint Result = GL_FALSE; int infoLogLength; glGetShaderiv(vertex_shader_id,GL_COMPILE_STATUS,&Result); glGetShaderiv(vertex_shader_id,GL_INFO_LOG_LENGTH,&infoLogLength); if(infoLogLength > 0){ std::vector<char> vertex_shader_error_message(infoLogLength+1); glGetShaderInfoLog(vertex_shader_id, infoLogLength, nullptr, &vertex_shader_error_message[0]); std::cout << "vertex shader:" << &vertex_shader_error_message[0] << std::endl; } //创建片段着色器 fragment_shader_id = glCreateShader(GL_FRAGMENT_SHADER); //读取shader.frag std::string fragment_shader_code; std::ifstream fragment_shader_stream(fragment_shader_path,std::ios::in); if(fragment_shader_stream.is_open()){ std::stringstream ss; ss << fragment_shader_stream.rdbuf(); fragment_shader_code = ss.str(); fragment_shader_stream.close(); } else{ std::cout << "current path = " << std::filesystem::current_path() << std::endl; if (!std::filesystem::exists(vertex_shader_path)) { std::cerr << "File not found: " << vertex_shader_path << std::endl; } std::cerr << "read fragment_shader fail!" << std::endl; } //加载fragment着色器程序代码 const char* fragment_shader_code_pointer = fragment_shader_code.c_str(); glShaderSource(fragment_shader_id,1,&fragment_shader_code_pointer,nullptr); //编译fragment shader glCompileShader(fragment_shader_id); //查看fragment编译结果 glGetShaderiv(fragment_shader_id,GL_COMPILE_STATUS,&Result); glGetShaderiv(fragment_shader_id,GL_INFO_LOG_LENGTH,&infoLogLength); if(infoLogLength > 0){ std::vector<char> fragment_shader_error_message(infoLogLength+1); glGetShaderInfoLog(fragment_shader_id, infoLogLength, nullptr, &fragment_shader_error_message[0]); std::cout << "fragment shader compile error:" << &fragment_shader_error_message[0] << std::endl; } //创建着色器程序 shader_program_id = glCreateProgram(); //附加着色器到程序 glAttachShader(shader_program_id,vertex_shader_id); glAttachShader(shader_program_id,fragment_shader_id); //链接shader glLinkProgram(shader_program_id); //检查程序链接结果 glGetProgramiv(shader_program_id,GL_LINK_STATUS,&Result); glGetProgramiv(shader_program_id,GL_INFO_LOG_LENGTH,&infoLogLength); if(infoLogLength > 0){ std::vector<char>program_error_message(infoLogLength + 1); glGetProgramInfoLog(shader_program_id,infoLogLength,nullptr,&program_error_message[0]); std::cout << "program link:" << &program_error_message[0] << std::endl; } //删除着色器编译结果 glDeleteShader(vertex_shader_id); glDeleteShader(fragment_shader_id);
} void MyGLWidget::doMVP()
{ //模型矩阵 QMatrix4x4 model_matrix; model_matrix.setToIdentity(); //lookAt QMatrix4x4 view_matrix; view_matrix.lookAt(camera_pos,look_dir,up_dir); //投影矩阵 QMatrix4x4 projection_matrix; projection_matrix.perspective(angle,aspect,near_plane,far_plane); //获取uniform变量 uniform_model_matrix_location = glGetUniformLocation(shader_program_id,"model_matrix"); uniform_view_matrix_location = glGetUniformLocation(shader_program_id,"view_matrix"); uniform_projection_matrix_location = glGetUniformLocation(shader_program_id,"projection_matrix"); //矩阵传入shader glUniformMatrix4fv(uniform_model_matrix_location,1,GL_FALSE,model_matrix.data()); glUniformMatrix4fv(uniform_view_matrix_location,1,GL_FALSE,view_matrix.data()); glUniformMatrix4fv(uniform_projection_matrix_location,1,GL_FALSE,projection_matrix.data()); } GLuint MyGLWidget::loadTexture() {
// QString bmp_path = "/Users/liuhang/CLionProjects/opengl-learning/resource/uvtemplate.bmp"; QString bmp_path = "/Users/liuhang/CLionProjects/opengl-learning/resource/uvtemplate-cube.bmp"; QImage texture_image(bmp_path); if (texture_image.isNull()) { std::cerr << bmp_path .toStdString() << "路径错误或文件损坏!" << std::endl; return 0; } // 转换为RGB格式并垂直翻转(OpenGL坐标原点在左下角) QImage gl_image = texture_image.mirrored().convertToFormat(QImage::Format_RGB888); GLuint textureID; glGenTextures(1, &textureID); glBindTexture(GL_TEXTURE_2D, textureID); // 上传纹理数据 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, gl_image.width(), gl_image.height(), 0, GL_RGB, GL_UNSIGNED_BYTE, gl_image.bits()); // 设置纹理参数 //===============设置纹理过滤=============== #if 0 //GL_NEAREST:最近像素点采样 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);#endif #if 0 //GL_LINEAR:线性过滤 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);#endif #if 1 //GL_MIPMAP_NEAREST: mipmap glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR_MIPMAP_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); //生成mipmap,多加这一行 glGenerateMipmap(GL_TEXTURE_2D);
#endif //解绑 glBindTexture(GL_TEXTURE_2D, 0); // 解绑 return textureID;
}
shader.vert
#version 330 core layout(location = 0) in vec3 vertex_posion_modelspace;
layout(location = 1) in vec2 vertex_uv;
out vec2 uv; uniform mat4 model_matrix;
uniform mat4 view_matrix;
uniform mat4 projection_matrix; void main(){ uv = vertex_uv; //输出uv坐标给fragment shader mat4 MVP_matrix = projection_matrix * view_matrix * model_matrix; gl_Position = MVP_matrix * vec4(vertex_posion_modelspace,1.0);
}
shader.frag
#version 330 core in vec2 uv;
out vec3 color; //关键字
uniform sampler2D texture_sampler; void main(){ //texture返回rgba的vec4 color = texture(texture_sampler,uv).rgb; }