当前位置: 首页 > news >正文

clickhouse--本地表和分布式表,副本机制,分片集群

1、本地表和分布式表

ck的表分为两种:

  • 分布式表
      一个逻辑上的表,可以理解为数据库中的视图,一般查询都查询分布式表。分布式表引擎会将我们的查询请求路由本地表进行查询,然后进行汇总最终返回给用户。
  • 本地表
      实际存储数据的表。

Distributed Table & Distributed Engine

  ClickHouse分布式表的本质并不是一张表,而是一些本地物理表(分片)的分布式视图,本身并不存储数据。分布式表建表的引擎为Distributed。
Distrbuted_table

Copy Highlighter-hljs
CREATE TABLE IF NOT EXISTS {distributed_table} as {local_table} 
ENGINE = Distributed({cluster}, '{local_database}', '{local_table}', rand())

Distributed引擎需要以下几个参数:

  • 集群标识符
  • 本地表所在的数据库名称
  • 本地表名称
  • 分片键(sharding key) - 可选
      该键与config.xml中配置的分片权重(weight)一同决定写入分布式表时的路由, 即数据最终落到哪个物理表上. 它可以是表中一列的原始数据(如site_id), 也可以是函数调用的结果, 如上面的SQL语句采用了随机值rand(). 注意该键要尽量保证数据均匀分布, 另外一个常用的操作是采用区分度较高的列的哈希值, 如intHash64(user_id).

数据查询的流程

在这里插入图片描述

  1. 各个实例之间会交换自己持有的分片的表数据;
  2. 汇总到同一个实例上返回给用户。

2、基于表的副本机制

① 特点

  • 副本策略表级别
      ClickHouse 的副本机制由表引擎(如 ReplicatedMergeTree)实现,用户可以为每张表单独配置副本数。
  • 最终一致性
      数据写入时,ClickHouse 异步复制到其他副本,可能存在短暂的数据不一致。
  • 依赖 ZooKeeper
      副本之间的协调通过 ZooKeeper 实现(如副本状态、任务分配)。

② 优点

  • 灵活性高
      用户可根据业务需求为不同表配置不同的副本策略。

  • 存储成本可控
      可以为重要表配置多副本,非重要表减少副本。

  • 适合 OLAP 场景
      高吞吐写入、实时查询。

③ 缺点

  • 依赖外部组件(如 ZooKeeper),增加了系统复杂性。
  • 数据一致性较弱(最终一致性)。

④ 与HDFS副本机制的区别

基于集群的副本机制(HDFS)

  • 特点

    • 副本策略全局化:HDFS 的副本机制是集群级别的,所有文件默认存储 3 个副本,用户无法针对单个文件或目录单独配置副本数。
    • 强一致性:数据写入时,HDFS 会同步写入所有副本,确保数据强一致性。
    • 数据块管理:HDFS 将文件切分为固定大小的数据块(如 128MB),每个块独立存储副本。
  • 优点

    • 简单易用,用户无需关心副本管理。
    • 适合通用文件存储场景(如 Hadoop 生态)。
  • 缺点

    • 灵活性差,无法针对特定数据单独配置副本策略。
    • 存储成本高(默认 3 副本)。
总结

在这里插入图片描述

3、分片集群

  副本虽然能够提高数据的可用性,降低丢失风险,但是每台服务器实际上必须容纳全量数据,对数据的横向扩容没有解决。
  要解决数据水平切分的问题,需要引入分片的概念。通过分片把一份完整的数据进行切分,不同的分片分布到不同的节点上,再通过 Distributed 表引擎把数据拼接起来一同使用。
  Distributed 表引擎本身不存储数据,有点类似于 MyCat 之于 MySql,成为一种中间件,通过分布式逻辑表来写入、分发、路由来操作多台节点不同分片的分布式数据。
  注意:ClickHouse 的集群是表级别的,实际企业中,大部分做了高可用,但是没有用分片,避免降低查询性能以及操作集群的复杂性。

  • 集群写入流程(3 分片 2 副本共 6 个节点)
    在这里插入图片描述

  • 集群读取流程(3 分片 2 副本共 6 个节点)
    在这里插入图片描述
    详细配置参考

相关文章:

  • c++ 典型练习题
  • MongoDB 查询文档
  • Python解决“数字分组求偶数和”问题
  • 如何实现网关
  • 课程分享 | 安全系统建设的挑战与解决方案
  • 【DeepSeek】CherryStudio + Ollama
  • FreiHAND (handposeX-json 格式)数据集-release >> DataBall
  • Springboot 熔断,穿透,雪崩
  • 网络安全-新型路径攻击流程及防御措施
  • 【论文精读】YOLO-World:实时开放词汇目标检测
  • 【无人集群系列---无人机集群编队算法】
  • Qt中C++与QML交互从原理、方法与实践陷阱深度解析
  • List的模拟实现(2)
  • 远程部署 Qt 应用程序套件错误原因
  • maven编译出错,javac: ��Ч��Ŀ�귢�а�: 17
  • 基于SpringBoot和Leaflet的邻省GDP可视化实战
  • 二叉树的遍历知识点及习题
  • 项目升级Sass版本或升级Element Plus版本遇到的问题
  • 文件包含-session2
  • 函数式编程:概念、特性与应用
  • 市场监管总局召开平台企业支持个体工商户发展座谈会
  • 当代科技拟召开债券持有人会议 ,对“H20科技2”进行四展
  • 吉林:消纳绿电,“氢”装上阵
  • 上海国际电影节特设“今日亚洲”单元
  • 举牌代跳明码标价、留言不堪入目,未成年人擦边短视频成引流利器
  • 当我们提起拉动消费时,应该拉动什么消费?